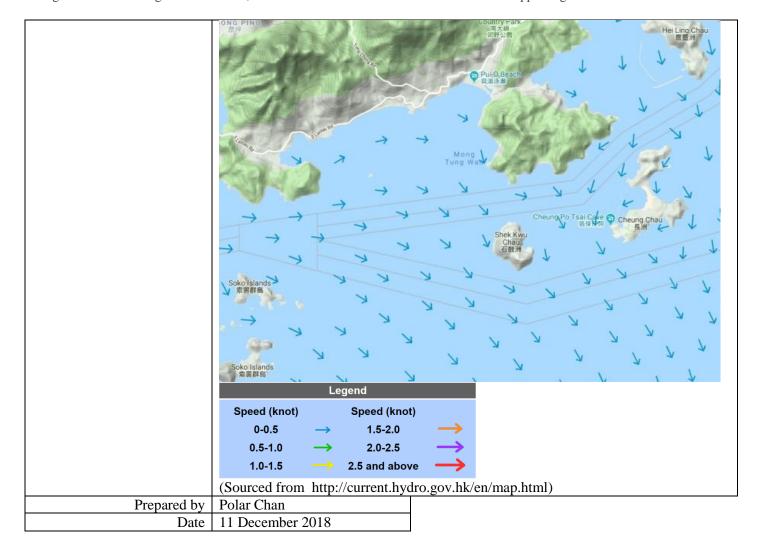
Contract No. EP/SP/66 Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix N	Exceedance Report	

Statistical Summary of Exceedances in the Reporting Period

	Wate	r Quality	
Location	Action Level	Limit Level	Total
B1	3	7	10
B2	4	5	9
В3	3	5	8
B4	5	4	9
CR1	3	5	8
CR2	1	6	7
F1	4	1	5
H1	3	2	5
S1	1	6	7
S2	1	4	5
S3	1	5	6
M1	2	7	9
<u>I</u>	Ν	Joise	
Location	Action Level	Limit Level	Total
M1 / N_S1	0	0	0
M2 / N_S2	0	0	0
M3 / N_S3	0	0	0

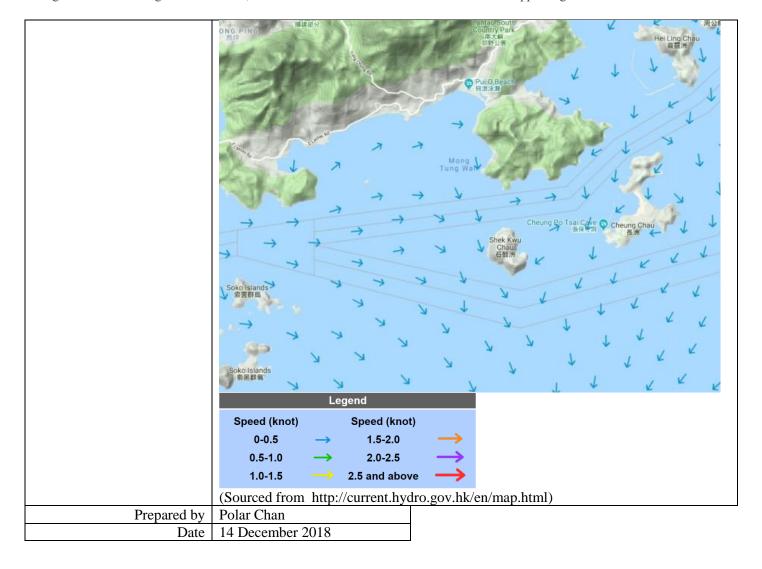

Project	Integrated Waste Managemen	nt Facilities, Phase 1		
Date	03 December 2018 (Lab result received on 06 December 2018)			
Time	13:57 – 17:27 (Mid-Flood)			
	Mid-Fl	lood		
Monitoring Location	B1, B2, B3, F1 & H1 + B1 • C1	PROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARINE CABLES 83 CR1 PROPOSED RECLAIMED AREA FOR THE IWMF	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Level		
	\geq 8.0 mg/L	$\geq 10.0 \text{ mg/L}$		
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance		Exceedance	
	8.5 mg/L (B1)	6.7 mg/L (C1)	5.8 mg/L (B4)	
	8.0 mg/L (B2)	6.5 mg/L (C2)	6.5 mg/L (M1)	
	8.0 mg/L (B3)		7.5 mg/L (CR1)	
	8.0 mg/L (F1)		6.8 mg/L (CR2)	
	8.2 mg/L (H1)			
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 03/12 include ground investigation (GI) work of 2 borehole drilling, DCM sample coring for pre-construction site trial and laying of geotextile with sand placing for ballasting at caisson seawall area. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. B1, B2, B3 and F1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project. CR1 and CR2, the closest monitoring stations to the site location when comparing to H1 (upstream monitoring station), exhibited a much smaller SS level. No observation of silt plume was made during the sampling event. Silt curtain checking was implemented by the contractor and checking result showed that no deficiency of silt curtain was found on that day. It might suggest that the high SS level exceedance at			

	H1 is deemed to be unrelated to the project.		
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 04/12, there was two observations might contribute the SS level increase where sand on the pontoon surface was nearly overflowed to the sea on FTB 19 and a big lump of sand was observed at the edge of the barge surface on 洋記 7. However, according to the rationale in the previous paragraph, these two observations were not considered as the source of SS exceedance at H1.		
Actions taken / to be taken	The Contractor was reminded to clean up the sand more frequently and hence to avoid		
	the sand was leaked outside the silt curtain. The Contractor was reminded to use an		
	elongated soft hose to avoid the sand accumulation on the pontoon surface during sand		
	blanket laying process.		
	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.		
Remarks	Current direction during mid-flood sampling on 03/12:		
	Country Park Applied		
	Legend		
	Speed (knot) Speed (knot)		
	0-0.5 \rightarrow 1.5-2.0 \rightarrow		
	$0.5-1.0 \longrightarrow 2.0-2.5 \longrightarrow$		
	1.0-1.5 -> 2.5 and above ->		
<i>n</i>	(Sourced from http://current.hydro.gov.hk/en/map.html)		
Prepared by	Polar Chan		
Date	7 December 2018		

Project	Integrated Waste Management Facilities, Phase 1			
Date	5 December 2018 (Lab result	t received on 10 December 20	18)	
Time	09:19 – 12:49 (Mid-Ebb)			
	15:02 – 18:32 (Mid-Flood)			
	Mid-E	Ebb		
Monitoring Location	B3, B4, M1 & CR1			
	+ B1 • S1-	PROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARINE CABLES S2 H1 SHEK KWU CHAU CR2 PROPOSED RECLAMED AREA FOR THE IMMF	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Level		
7 tetion & Emili Levels	$\geq 8.0 \text{ mg/L}$	$\geq 10.0 \text{ mg/L}$		
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
Weasurement Level	Exceedance	Control Stations	Exceedance	
	9.3 mg/L (B3)	6.2 mg/L (C1)		
		6.3 mg/L (C1)	7.5 mg/L (B1)	
	8.8 mg/L (B4)	9.8 mg/L (C2)	7.8 mg/L (B2)	
	10.7 mg/L (M1)		7.5 mg/L (F1)	
	8.8 mg/L (CR1)		7.7 mg/L (H1)	
			5.3 mg/L (CR2)	
Possible reason for Action or Limit Level Non-compliance				

-				
	CR1 is deemed to be unrelat	ed to the projec	t.	
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 4/12, where sand on the pontoon surface was nearly overflowed to the sea on FTB 19 and a big lump of sand was observed at the edge of the barge surface on 洋記 7. However, according to the rationale in the previous paragraph, these two observations were not considered as the source of SS exceedance.			
Actions taken / to be taken				
	The Contractor was reminded to clean up the sand more frequently and hence to avoid the sand was leaked outside the silt curtain. The Contractor was reminded to use an elongated soft hose to avoid the sand accumulation on the pontoon surface during sand blanket laying process.			
	Examination of environment weekly inspection, and the C	Contractor is ren	ninded to imple	
	mitigation measures as per tl	he Updated EM	&A Manual.	
	Mid-F	lood		
Monitoring Location	H1 B1 S	PROPOSED OUTFALL + PROPOSED OUTFALL + PROPOSED TALL +	H1 SHEK KWU CHAU CR2 S3 CR1	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Danamatan	C1-1 C-1:1 (CC)			
Parameter Action & Limit Levels	Suspended Solid (SS) Action Level	1	Limit Level	
Action & Limit Levels	Action Level $\geq 10.0 \text{ mg/L } (120\% \text{ of C2})$		$\geq 10.8 \text{ mg/L}$ (130% of C2)
Measurement Level	Impact Station(s) of	Control Stati		Impact Station(s) without
Wiedstrement Level	Exceedance	Control Stati	ons	Exceedance
	11.0 mg/L (M1)	7.2 mg/L (C1)	6.5 mg/L (B1)
	11.0 mg/L (W11)	8.3 mg/L (C2		8.0 mg/L (B2)
				7.0 mg/L (B3)
				6.8 mg/L (B4)
				8.3 mg/L (F1)
				5.7 mg/L (H1)
	8.3 mg/L (CR1)		8.3 mg/L (CR1)	
				7.8 mg/L (CR2)
Possible reason for Action or	Works scheduled on site on 05/12 include ground investigation (GI) work of 2			
Limit Level Non-compliance	borehole drilling, DCM sample coring for pre-construction site trial and laying of sand			
	blanket at caisson seawall area.			

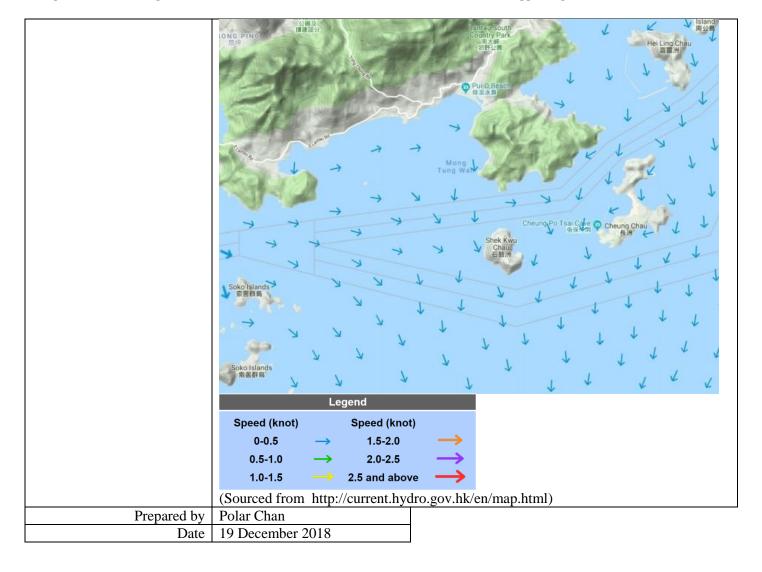
Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. M1 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring location is deemed to be unrelated to the Project. Silt curtain checking was implemented by contractor and checking result showed no deficiency of silt curtain was found. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 4/12, where sand on the pontoon surface was nearly overflowed to the sea on FTB 19 and a big lump of sand was observed at the edge of the barge surface on 洋記 7. However, according to the rationale in the previous paragraph, these two observations were not considered as the source of SS exceedance. Actions taken / to be taken The Contractor was reminded to clean up the sand more frequently and hence to avoid the sand was leaked outside the silt curtain. The Contractor was reminded to use an elongated soft hose to avoid the sand accumulation on the pontoon surface during sand blanket laying process. Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. Current direction during mid-flood sampling on 5/12: Remarks Current direction during mid-flood sampling on 5/12:


Project	Integrated Waste Management Facilities, Phase 1			
Date	7 December 2018 (Lab result	t received on 1	2 December 20	18)
Time	10:51 – 14:21 (Mid-Ebb)			
	Mid-F	Ebb		
Monitoring Location	B2 & B4			
	+ B1 S1	PROPOSED OUTFALL + 4 PROPOSED SUBMARINE CO SUBMARINE CO PROPOSED RECLAMM FOR THE IWMF	H1 SHEK KWU CHAU CR2 83 CR1	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
7 Retion & Emili Levels	\geq 9.4 mg/L (120% of C1)		$\geq 10.1 \text{ mg/L}$ (120% of C1)
Measurement Level	Impact Station(s) of	Control Stati		Impact Station(s) without
Tyrougarement Ecver	Exceedance		ions	Exceedance
	10.0 mg/L (B2)	7.8 mg/L (C	1)	8.3 mg/L (B1)
	9.8 mg/L (B4)	8.0 mg/L (C		7.8 mg/L (B3)
		8	,	7.8 mg/L (F1)
				8.2 mg/L (H1)
				8.2 mg/L (M1)
				8.5 mg/L (CR1)
				9.2 mg/L (CR2)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 07/12 include ground investigation (GI) work of 2 borehole drilling, DCM sample coring for pre-construction site trial and laying of sand blanket at both caisson seawall area and DCM Plant Trial Area.			
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.			
	B2 and B4 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project.			
	Silt curtain checking was implemented by the contractor and checking result showed that no deficiency of silt curtain was found on that day.			
	Site tidiness in the present ba	arges in the Pro	oject site were cl	necked during weekly site

	inspection on 04/12, there was two observations might contribute the SS level increase			
	where sand on the pontoon surface was nearly overflowed to the sea on FTB 19 and a			
	big lump of sand was observed at the edge of the barge surface on 祥記 7. However,			
	according to the rationale in previous paragraph, these two observations were not			
	considered as the source of SS exceedance.			
Actions taken / to be taken	Sand on the pontoon surface was picked up and poured into the hopper by the Contractor on 07/12. Also, the big lump of sand at the edge of the barge surface was cleaned by the Contractor on 07/12.			
	The Contractor was reminded to clean up the sand more frequently and use an elongated soft hose, and hence to avoid the sand was leaked outside the silt curtain.			
	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-ebb sampling on 7/12:			
	Entau South Country Park 原文語 图形的 Pui(O Beach) 原文語 图形的 Tung War Cheung Po Tsai Cafe ② Cheung Chau 原文語 Shek Kwu Chau 石酸洲 Action Acti			
	→ × × × × × × × × × × × × × × × × × × ×			
	oko islands			
	oko Islands 泰書群島			
	Legend			
	Speed (knot) Speed (knot)			
	0-0.5 → 1.5-2.0 →			
	0.5-1.0 → 2.0-2.5 →			
	1.0-1.5 —> 2.5 and above —>			
	(Sourced from http://current.hydro.gov.hk/en/map.html)			
Prepared by	Polar Chan			
Date	13 December 2018			

Project	Integrated Waste Management Facilities, Phase 1			
Date	10 December 2018 (Lab resu	lt received on 13 Decer	mber 2018)	
Time	08:00 – 10:52 (Mid-Flood)			
	12:37 – 16:07 (Mid-Ebb)	12:37 – 16:07 (Mid-Ebb)		
	Mid-Fl	lood		
Monitoring Location	B1, B2, B3, B4, F1, S2 & S3			
	+ B1 S1	A PROPOSED 132KV SUBMARINE CABLES S2 H1 SHEK KWU CH CR2 S3 PROPOSED RECLAIMED AREA FOR THE INMIF	RAU Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit L	evel	
Tieron & Zinnt Zevens	≥ 11.2 mg/L (120% of C2)		mg/L (130 % of C2)	
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance		Exceedance	
	13.0 mg/L (B1)	7.0 mg/L (C1)	8.8 mg/L (H1)	
	13.8 mg/L (B2)	9.3 mg/L (C2)	7.3 mg/L (M1)	
	14.0 mg/L (B3)	7.5 mg/L (C2)	11.0 mg/L (CR1)	
	13.3 mg/L (B4)		8.7 mg/L (CR2)	
	12.2 mg/L (F1)		10.5 mg/L (S1)	
	15.3 mg/L (S2)			
	13.5 mg/L (S3)			
Possible reason for Action or	Works scheduled on site on 1	0/12 include ground in	vestigation (GI) work of 2	
Limit Level Non-compliance	borehole drilling and DCM sa	ample coring for pre-co	onstruction site trial, which shall	
-	not be a major source of SS of	concentration increase c	considering the limited scale and	
	nature of works.			
	Dominating sea current direc	tion was found to be fro	om Southeast to Northwest at	
	waters around Shek Kwu Cha		311	
	waters around shok it wa ch	au.		
	R1 R2 R3 R4 F1 and \$2 ar	ra located at unralated c	tream direction (neither upstream	
	nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project.			
		3		
		-		
	S3 is located close to the wor	ks location within the F	Project site, while no observation The absence of site works and	

	above rationales might suggest that the high SS level exceedance at S3 is deemed to be unrelated to the project.			
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 14/12, where there was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. Mid-Ebb			
Monitoring Location	B1, B2, B3, H1, M1, CR1 &		SHER KWU CHAU CR2 S3 CR1	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
	\geq 8.2 mg/L (120% of C1)		$\geq 10.0 \text{ mg/L}$	
Measurement Level	Impact Station(s) of Exceedance 10.8 mg/L (B1)	Control Stati		Impact Station(s) without Exceedance 6.0 mg/L (B4)
	10.0 mg/L (B2) 10.0 mg/L (B3) 9.8 mg/L (H1) 9.7 mg/L (M1) 10.7 mg/L (CR1) 11.0 mg/L (CR2)	6.2 mg/L (C		6.0 mg/L (F1) 6.5 mg/L (S1) 6.8 mg/L (S2) 7.7 mg/L (S3)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 10/12 include ground investigation (GI) work of 2 borehole drilling and DCM sample coring for pre-construction site trial, which shall not be a major source of SS concentration increase considering the limited scale and nature of works.			
	Dominating sea current direct waters around Shek Kwu Cha		d to be from So	utheast to Northwest at
	B1, B2, B3 and M1 are located	ed at unrelated	l stream direction	on (neither upstream nor

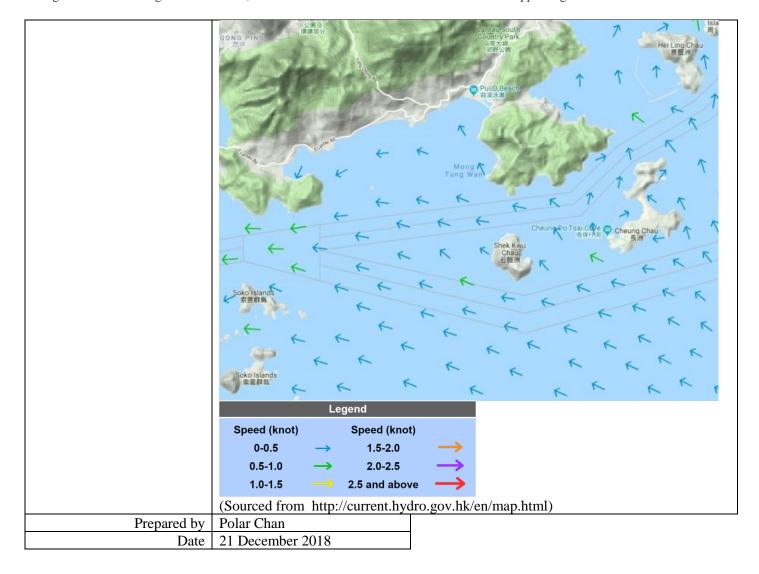

	downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project.		
	H1 is located upstream direction, CR1 is located at downstream direction and CR2 is located close to the works location within the Project site, while no observation of silt plume was made during the sampling event. The absence of site works and above rationales might suggest that the high SS level exceedance at H1, CR1 and CR2 are deemed to be unrelated to the project.		
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 14/12, where there was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.		
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.		
Remarks	Current direction during mid-flood sampling on 10/12: Country Park Cheung Po Tsai Care Cheung Chau		

Project	Integrated Waste Manageme	ent Facilities, Phase 1		
Date	12 December 2018 (Lab result received on 18 December 2018)			
Time	08:37 – 12:07 (Mid-Flood)			
	14:09 – 16:51 (Mid-Ebb)			
	Mid-F			
Monitoring Location	B1, B3, B4, M1, CR1, CR2,	S1 & S3		
	+ B1 (S1	B2 4 PROPOSED OUTFALL + 4 PROPOSED 132RV SUBMARINE CABLES S2 H1 SHEK KWU CHAU GR2 FROPOSED RECLAMED AREA FOR THE IMMF	Key A PROPOSED 132KV SUBMARINE CABLE OC MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Level		
	≥ 11.2 mg/L (120% of C2)	\geq 12.1 mg/L ((130 % of C2)	
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance		Exceedance	
	12.3 mg/L (B1)	9.5 mg/L (C1)	11.0 mg/L (B2)	
	12.3 mg/L (B3)	9.3 mg/L (C2)	10.7 mg/L (F1)	
	14.8 mg/L (B4)		9.3 mg/L (H1)	
	15.0 mg/L (M1)		10.7 mg/L (S2)	
	13.3 mg/L (CR1)			
	15.2 mg/L (CR2)			
	13.5 mg/L (S1)			
	13.7 mg/L (S3)			
Possible reason for Action or		12/12 include ground investiga	ation (GI) work of borehole	
Limit Level Non-compliance		g for pre-construction site trial		
•		ng for ballasting and laying of		
		ing for banasting and laying of	sand branket at caisson	
	seawall area.			
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.			
	B1, B3, B4, S1, F1 and M1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project.			

Actions taken / to be taken	CR1 is located at upstream de location within the Project sit the sampling event. Silt curtar checking result showed that it Control stations and most of level of that tidal period, implewaters. It might suggest that deemed to be unrelated to the Site tidiness in the present base inspection on 14/12, where the that might contribute to the in Examination of environments weekly inspection, and the Comitigation measures as per the	te, while no obtain checking who deficiency of the monitoring dying the high the high SS level project. The project of the pr	servation of silt as implemented of silt curtain was stations showed background SS well exceedance approximately between the project site were capior observations evel was observed of the Project winded to imple	t plume was made during by the contractor and as found on that day. d considerably high SS level of surrounding at CR1, CR2 & S3 are hecked during weekly site of improper site practice yed during the inspection. will be continued during the
	Mid-F	Ebb		
Monitoring Location	B1, M1 & S1 B10 (S1)	PROPOSED OUTFALL + 4 PROPOSED 1 SUBMARINE CO PROPOSED RECLAMME FOR THE IMME	H1 SHEK KWU CHAU CR2 S3 CR1	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
	≥ 15.0 mg/L (120% of C1)		\geq 16.3 mg/L (
Measurement Level Possible reason for Action or	Impact Station(s) of Exceedance 18.5 mg/L (B1) 17.0 mg/L (M1) 16.8 mg/L (S1) Works scheduled on site on 1	Control Stati 12.5 mg/L (C 13.2 mg/L (C	C1) C2)	Impact Station(s) without Exceedance 11.5 mg/L (B2) 14.3 mg/L (B3) 11.8 mg/L (B4) 11.7 mg/L (F1) 12.0 mg/L (H1) 10.7 mg/L (CR1) 12.5 mg/L (CR2) 11.2 mg/L (S2) 13.0 mg/L (S3)
Limit Level Non-compliance	drilling, DCM sample coring			
Limit Level Non-compitance	unning, DCM sample coring	101 pre-constr	uction site that,	Dem main works, laying

of geotextile with sand placing for ballasting and laying of sand blanket at caisson seawall area. Dominating sea current direction was found to be from Northwest to Southwest waters around Shek Kwu Chau. B1, S1 and M1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project. Silt curtain checking was implemented by the contractor and checking result showed that no deficiency of silt curtain was found on that day. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 14/12, where there was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection. Examination of environmental performance of the Project will be continued during the Actions taken / to be taken weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. Remarks Current direction during mid-flood sampling on 12/12: Current direction during mid-ebb sampling on 12/12:

Project	Integrated Waste Management Facilities, Phase 1			
Date	15 December 2018 (Lab result received on 19 December 2018)			
Time	11:42 – 15:12 (Mid-Flood)			
	Mid-Flood			
Monitoring Location	B1, B2, B3, B4, F1, M1, CR1, CR2, S1, S2 & S3			
	+ B10 (51	PROPOSED OUTFALL + PROPOSED SUBMARINE CO PROPOSED RECLAMM FOR THE WIMF	H1 SHEK KWU CHAU CR2 S3 CR1	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IVMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IVMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
retion & Emilit Devels	\geq 9.6 mg/L (120% of C2)		\geq 10.4 mg/L (130% of C2)
Measurement Level	Impact Station(s) of	Control Stat		Impact Station(s) without
Wiedsdreinene Eever	Exceedance	Control State	ions	Exceedance
Possible reason for Action or	11.3 mg/L (B1) 15.0 mg/L (B2) 13.5 mg/L (B3) 14.5 mg/L (B4) 10.0 mg/L (F1) 14.2 mg/L (M1) 12.0 mg/L (CR1) 15.5 mg/L (CR2) 13.5 mg/L (S1) 13.2 mg/L (S2) 12.3 mg/L (S3) Works scheduled on site on 1	•	ground investiga	8.5 mg/L (H1) ation (GI) work of 2
Limit Level Non-compliance	borehole drilling, DCM mair	n works and la	ying of sand bla	nket at both caisson seawall
	area and DCM plant trial area. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. B1, B2, B3, B4, S1, S2, F1 and M1 are located at unrelated stream direction (neither		d stream direction (neither	
	upstream nor downstream, fa monitoring locations are deep	- ·		

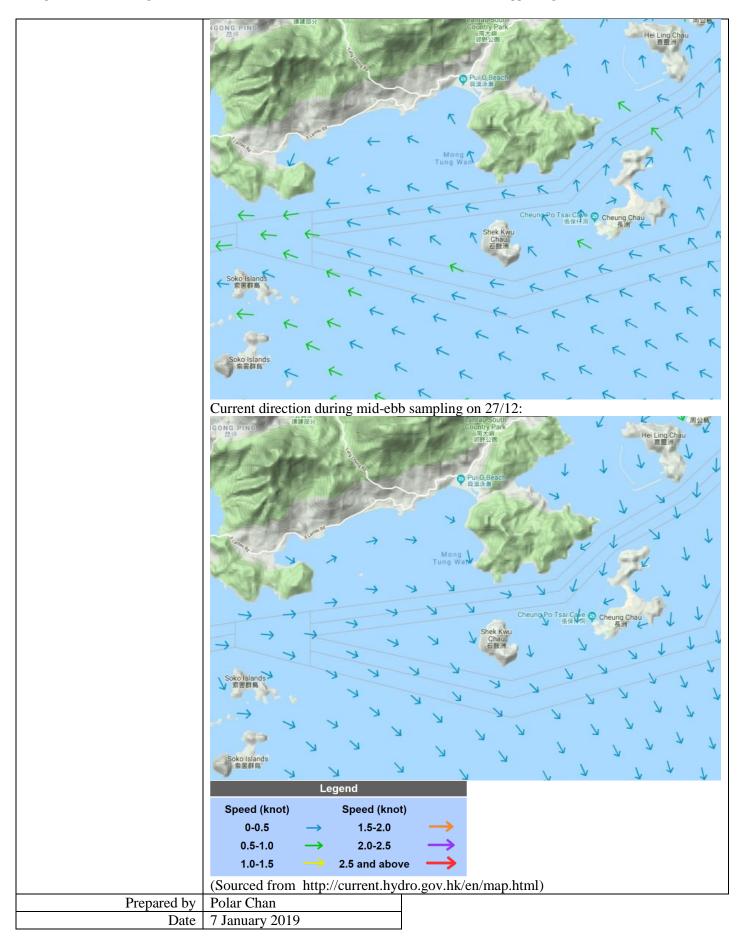

	CR1 is located at upstream direction, CR2 & S3 are located close to the works location within the Project site, while no observation of silt plume was made during the sampling event. Silt curtain checking was implemented by the contractor and checking result showed that no deficiency of silt curtain was found on that day. Control stations and most of the monitoring stations showed considerably high SS level of that tidal period, implying the high background SS level of surrounding waters. It might suggest that the high SS level exceedance at CR1, CR2 & S3 are deemed to be unrelated to the project. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 14/12, where there was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-flood sampling on 15/12: Contract of the contr
	0-0.5 → 1.5-2.0 →
	0.5-1.0 \rightarrow 2.0-2.5 \rightarrow
	1.0-1.5 \longrightarrow 2.5 and above \longrightarrow (Sourced from http://current.hydro.gov.hk/en/map.html)
Prepared by	Polar Chan
Date	20 December 2018

Project	Integrated Waste Managemen	nt Facilities, P	Phase 1		
Date	17 December 2018 (Lab resu	lt received on	20 December 2	018)	
Time	08:00 – 08:44 (Mid-Ebb)				
	12:50 – 16:20 (Mid-Flood)				
	Mid-E	Ebb			
Monitoring Location	B2, B4, H1, M1, CR1, CR2 &	& S3			
	+ B1 S1	PROPOSED OUTFALL + 4 PROPOSED SUBMARINE OF THE IMME	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
	$\geq 8.2 \text{ mg/L } (120\% \text{ of C1})$		$\geq 10.0 \text{ mg/L}$		
Measurement Level	Impact Station(s) of	Control Stat		Impact Station(s) without	
	Exceedance			Exceedance	
	8.5 mg/L (B2)	6.8 mg/L (C	(1)	5.8 mg/L (B1)	
	8.8 mg/L (B4)	6.7 mg/L (C		7.0 mg/L (B3)	
	8.5 mg/L (H1)	017 mg/2 (0	-)	6.3 mg/L (F1)	
	13.2 mg/L (M1)			7.5 mg/L (S1)	
	13.2 mg/L (W1) 12.7 mg/L (CR1)			6.7 mg/L (S2)	
				0.7 mg/L (32)	
	9.5 mg/L (CR2)				
Descible masses for Astion on	8.8 mg/L (S3)	17/10 :1 1-		-ti(CI)1f-2	
Possible reason for Action or		Works scheduled on site on 17/12 include ground investigation (GI) work of 2			
Limit Level Non-compliance	borehole drilling, DCM main	ı works, laying	g of geotextile v	vith sand placing for	
	ballasting at caisson seawall	area and layin	g of sand blank	et at caisson seawall area.	
	Dominating sea current direc	tion was found	d to be from No	rthwest to Southeast at	
	waters around Shek Kwu Cha	au.			
	B2, B4 and M1 are located at	t unrelated stre	eam direction (r	either upstream nor	
	downstream, far away) to the		·	•	
	locations are deemed to be un				
			J - 		
III in leasted of second		d CD1:	1 . 1 . 1	11 11 CD2 0 C2	
	H I is located at unstream loc	ation. CR Lis	located at down	stream direction. CR2 & S3 1	
	H1 is located at upstream loc are located close to the works				

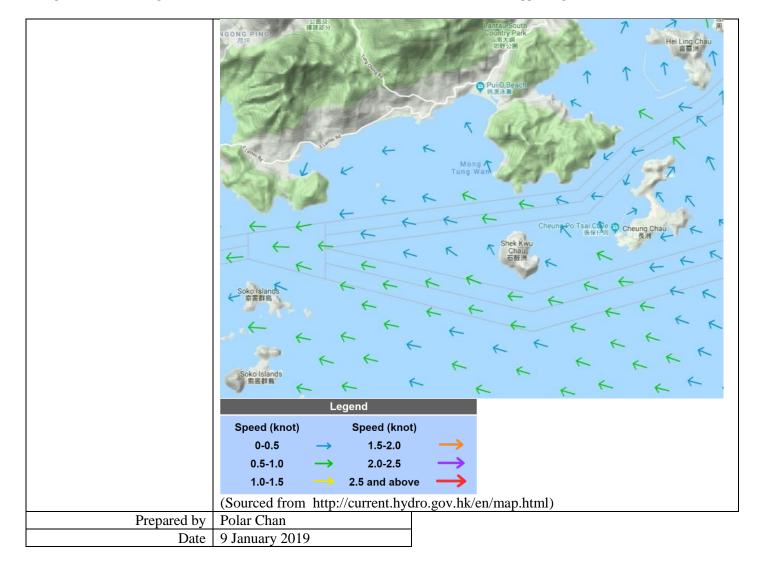
	silt plume was made during t			•
	implemented by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. It might suggest that the high SS level exceedance at H1, CR1, CR2 & S3 are deemed to be unrelated to the Project.			
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 18/12, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.			
Actions taken / to be taken	Examination of environment weekly inspection, and the C mitigation measures as per th	al performance contractor is rer	of the Project minded to imple	will be continued during the
	Mid-F		ixA Manual.	
Monitoring Location	B1, B3, B4, F1, H1 & S2	1000		
	+ B10 S1	PROPOSED OUTFALL + 4 PROPOSED 1: SUBMARINE CA PROPOSED RECLAIME FOR THE IMMF	SHEK KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			-
Action & Limit Levels	Action Level		Limit Level	
	\geq 8.2 mg/L (120% of C2)		$\geq 10.0 \text{ mg/L}$	
Measurement Level	Impact Station(s) of Exceedance	Control Stati	ons	Impact Station(s) without Exceedance
	8.5 mg/L (B1) 8.3 mg/L (B3) 9.3 mg/L (B4) 8.7 mg/L (F1) 10.8 mg/L (H1) 10.0 mg/L (S2)	5.7 mg/L (C2 6.8 mg/L (C2		6.8 mg/L (B2) 6.8 mg/L (M1) 6.7 mg/L (CR1) 6.3 mg/L (CR2) 7.8 mg/L (S1) 7.7 mg/L (S3)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 17/12 include ground investigation (GI) work of 2 borehole drilling, DCM main works, laying of geotextile with sand placing for ballasting at caisson seawall area and laying of sand blanket at caisson seawall area.		ntion (GI) work of 2 with sand placing for	
	Dominating sea current direct waters around Shek Kwu Ch		I to be from Sou	utheast to Northwest at
	B1, B3, B4, F1 and S2 are located at unrelated stream direction (neither upstream downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project.			

CR1, CR2 and S3, the closet monitoring stations to the site location when comparing to H1 (downstream monitoring station), exhibited a smaller SS level. It might suggest that the high SS level exceedance at H1 is deemed to be unrelated to the Project. However, questionable silt curtain deployment condition in the present pelican barge was observed by MMO and SO, where presence of sandy water outside the silt curtain were found around 2:30pm. Also, silt plume was observed near the pelican barge YGZH 1332 and it was recorded by SO around 11:10 am, and the mal-practice was stopped immediately. Actions taken / to be taken The sand blanket laying works were suspended by the Contractor immediately and the Contractor was reminded to properly fix and maintain the deployed silt curtain for the operation of sand blanket laying works. Further diver inspection on silt curtain was implemented on 18/12/2018 and checking result showed no deficiency of silt curtain was found. Silt plume near pelican barge "YGZH 1332" vanished immediately after switching off the propeller of the barge. The environmental department of the Contractor was reminded to keep paying attention to avoid the repeating of such incidents. Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. Remarks Current direction during mid-ebb sampling on 17/12:

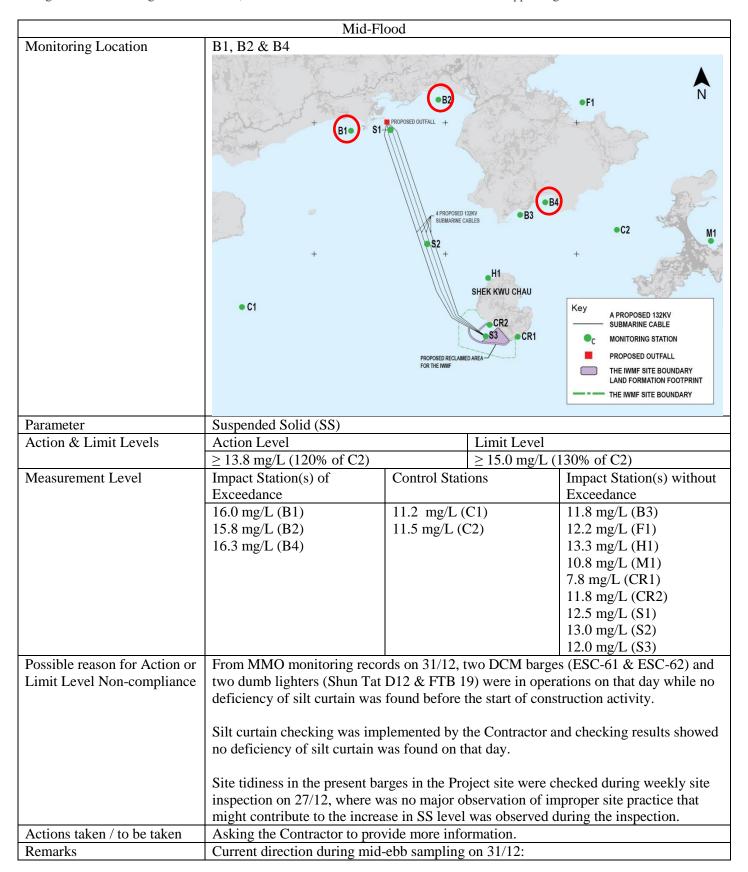
Current direction during mid-flood sampling on 17/12:

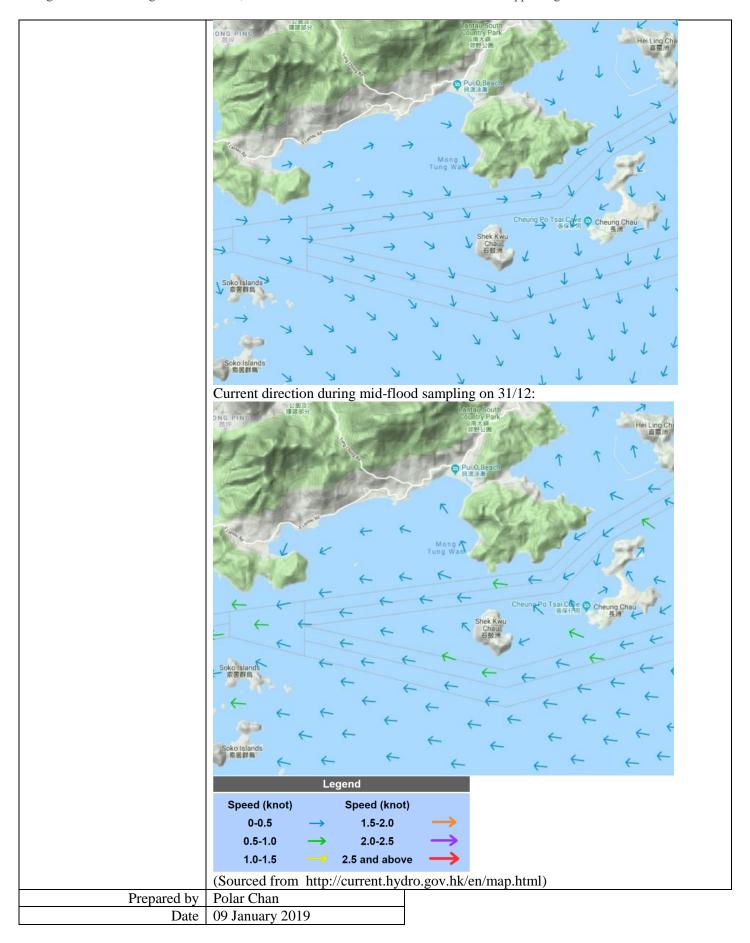


Project	Integrated Waste Managemen	nt Facilities, Pl	hase 1	Integrated Waste Management Facilities, Phase 1		
Date	19 December 2018 (Lab result received on 27 December 2018)					
Time	08:00 – 10:41 (Mid-Ebb)					
	Mid-Ebb					
Monitoring Location	F1, M1, CR1, CR2, S2 & S3					
	+ B1 S1-	PROPOSED OUTFALL + 4 PROPOSED SUBMARINE CO. SZELAME PROPOSED RECLAME FOR THE IMME		Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Parameter	Suspended Solid (SS)					
Action & Limit Levels	Action Level		Limit Level			
retion & Emili Ecvers	$\geq 10.4 \text{ mg/L } (120\% \text{ of C1})$		\geq 11.3 mg/L ((130% of C1)		
Measurement Level	Impact Station(s) of	Control Stati		Impact Station(s) without		
111045 41101110 20 (01	Exceedance		-0115	Exceedance		
	10.5 mg/L (F1)	8.7 mg/L (C	1)	7.8 mg/L (B1)		
	13.8 mg/L (M1)	9.5 mg/L (C	·	7.5 mg/L (B2)		
	14.0 mg/L (CR1)	7.0	_/	5.5 mg/L (B3)		
	15.3 mg/L (CR2)			7.5 mg/L (B4)		
	11.0 mg/L (S2)			6.2 mg/L (H1)		
				7.5 mg/L (S1)		
Possible reason for Action or	11.8 mg/L (S3)	0/12 include a	round investice	•		
Limit Level Non-compliance	borehole drilling and laying of sand blanket at both plant trial area and seawall area. Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.		ial area and seawall area. rthwest to Southeast at			
	S2, F1 and M1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring			•		
	locations are deemed to be unrelated to the Project. CR1 is located at downstream direction, CR2 & S3 are located close to the works location within the Project site, while silt curtain checking was implemented by the Contractor and checking result showed that no deficiency of silt curtain was found that day. It might suggest that the high SS exceddance at CR1, CR2 & S3 are deem to be unrelated to the Project.					
			was implemented by the of silt curtain was found on			
	Page 1	· · ·				


	However, a track of observable silt plume at the back of the pelican barge deployed
Actions taken / to be taken	for sand blanket laying works was found around 3:00 pm. After switching off the engine of the pelican barge, the observable silt plume had vanished. The Contractor confirmed the observable silt plume was related to the engine operation of pelican barge in shallow water. The Contractor designed to use the tugboat to manoeuvre the pelican barge especially in shallow water. The environmental department of the Contractor was reminded to keep paying attention to
Remarks	avoid the repeating of such incidents. Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-ebb sampling on 19/12: Parting South County Park Pa
	$\begin{array}{cccc} 0-0.5 & \longrightarrow & 1.5-2.0 & \longrightarrow \\ 0.5-1.0 & \longrightarrow & 2.0-2.5 & \longrightarrow \end{array}$
	1.0-1.5
Drongrad by	(Sourced from http://current.hydro.gov.hk/en/map.html) Polar Chan
Prepared by	
Date	31 December 2018

Project	Integrated Waste Managemen	nt Facilities, Phase 1		
Date	27 December 2018 (Lab resu	lt received on 05 January 20	19)	
Time	08:59 – 12:29 (Mid-Flood)	08:59 – 12:29 (Mid-Flood)		
	14:26 – 17:56 (Mid-Ebb)	14:26 – 17:56 (Mid-Ebb)		
	Mid-Fl	lood		
Monitoring Location	B1, B2, CR1 & CR2			
	+ B1 S1	PROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARINE CABLES \$2 H1 SHEK KWU CHAU CR2 FOR THE IMMF	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Level		
Action & Ellint Levels	$\geq 8.0 \text{ mg/L}$	$\geq 10.0 \text{ mg/I}$		
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
iviousurement Level	Exceedance		Exceedance	
	9.3 mg/L (B1)	7.8 mg/L (C1)	4.0 mg/L (B3)	
	8.5 mg/L (B2)	6.3 mg/L (C2)	6.0 mg/L (B4)	
		0.3 Hig/L (C2)	6.8 mg/L (F1)	
	9.2 mg/L (CR1)		• .	
	10.3 mg/L (CR2)		5.8 mg/L (H1)	
			7.2 mg/L (M1)	
			7.5 mg/L (S1)	
			7.2 mg/L (S2)	
			6.3 mg/L (S3)	
Possible reason for Action or Limit Level Non-compliance			ges (ESC-61 & ESC-62) and on that day. No deficiency of	
	Silt curtain checking was implemented by the Contractor and checking results showed no deficiency of silt curtain was found on that day.			
	Site tidiness in the present barges in the Project site were checked during w inspection on 27/12, where was no major observation of improper site pract might contribute to the increase in SS level was observed during the inspect		improper site practice that	
Actions taken / to be taken	Asking the Contractor to prov		during the hispection.	
retions taken / to be taken	risking the Contractor to pro	vide more miormation.		
Mid-Ebb				


Monitoring Location	CR1 & S1		
	+ B1 • C1	B2 APROPOSED OUTFALL + APROPOSED 132RV SUBMARINE CABLES B3 S2 H1 SHEK KWU CHAU CR2 S3 CR1 PROPOSED RECLAMED AREA FOR THE INMIF	A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level	Limit Level	
	\geq 8.0 mg/L	≥ 10.0 mg/L	
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance
	8.5 mg/L (CR1) 9.8 mg/L (S1)	5.5 mg/L (C1) 6.7 mg/L (C2)	7.3 mg/L (B1) 7.8 mg/L (B2) 7.8 mg/L (B3) 5.8 mg/L (B4) 5.8 mg/L (F1) 6.3 mg/L (H1) 5.3 mg/L (M1) 7.8 mg/L (CR2) 7.5 mg/L (S2) 7.7 mg/L (S3)
Possible reason for Action or Limit Level Non-compliance	From MMO monitoring record two dumb lighters (DT 12 & silt curtain was found before Silt curtain checking was improved and silt curtain was found before silt curtain was found before as the	FTB 19) were in operations of the start of construction active plemented by the Contractor as was found on that day. Targes in the Project site were over t	on that day. No deficiency of ity. and checking results showed checked during weekly site mproper site practice that
Actions taken / to be taken	Asking the Contractor to prov		<u> </u>
Remarks	Current direction during mid-		
	content direction during find	Too a sumpring on 27/12.	



Project	Integrated Waste Management	nt Facilities, Phase	e 1	
Date	29 December 2018 (Lab result received on 9 January 2019)			
Time	10:40 – 14:10 (Mid-Flood)			
	Mid-Fl	Mid-Flood		
Monitoring Location	B1, B2, B3, B4, H1, CR1, Cl	R2, S1, S2 & S3		
	+ B1 • C1	A PROPOSED 122KV SUBMARINE CABLES S2 PROPOSED RECLAMED AREA— FOR THE INMIF	F1 KKWU CHAU Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Li	mit Level	
	$\geq 8.6 \text{ mg/L } (120\% \text{ of C2})$		10.0 mg/L	
Measurement Level	Impact Station(s) of	Control Stations	<u> </u>	
	Exceedance		Exceedance	
Possible reason for Action or Limit Level Non-compliance	lighters (Shun Tat D12 & FT of silt curtain was found before Silt curtain checking was improved the silt curtain was found before the silt curtain was into deficiency of silt curtain was silt to the silt to the silt curtain was silt to the silt to t	"B-12) were in ope ore the start of con plemented by the C was found on that c arges in the Project	Contractor and checking results showed	
	,			
	might contribute to the increa		s observed during the inspection.	
Actions taken / to be taken	_	vide more informa	ation.	

Project	Integrated Waste Management Facilities, Phase 1			
Date	31 December 2018 (Lab resu	lt received on 09 Ja	nuary 2019)	
Time	08:00 – 09:30 (Mid-Ebb)			
	12:31 – 16:00 (Mid-Flood)			
	Mid-E	Ebb		
Monitoring Location	+ B1		Key A PROPOSED 132KV SUBMARINE CABLE	
Danamatan	Commanded Colid (CC)			
Parameter Action & Limit Levels	Suspended Solid (SS) Action Level	Lin	nit Level	
Action & Limit Levels			4.3 mg/L (130% of C1)	
Measurement Level	\geq 13.2 mg/L (120% of C1) Impact Station(s) of	Control Stations	Impact Station(s) without	
Wedstrement Level	Exceedance	Control Stations	Exceedance	
	16.0 mg/L (S1)	11.0 mg/L (C1)	9.3 mg/L (B1)	
	15.5 mg/L (S2)	8.8 mg/L (C2)	9.0 mg/L (B2)	
	13.3 Hig/L (32)	0.0 Hig/L (C2)	9.5 mg/L (B3)	
			10.8 mg/L (B4)	
			11.3 mg/L (F1)	
			9.5 mg/L (H1)	
			10.3 mg/L (M1)	
			11.2 mg/L (CR1)	
			9.5 mg/L (CR2)	
			11.5 mg/L (S3)	
Possible reason for Action or	From MMO monitoring records on 31/12, two DCM barges (ESC-61 & ESC-62) and			
Limit Level Non-compliance	two dumb lighters (Shun Tat D12 & FTB 19) were in operations on that day while no			
	deficiency of silt curtain was found before the start of construction activity.			
	Silt curtain checking was implemented by the Contractor and checking results showed no deficiency of silt curtain was found on that day.			
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 27/12, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.			
	inspection on 27/12, where w	as no major observ	ation of improper site practice that	

