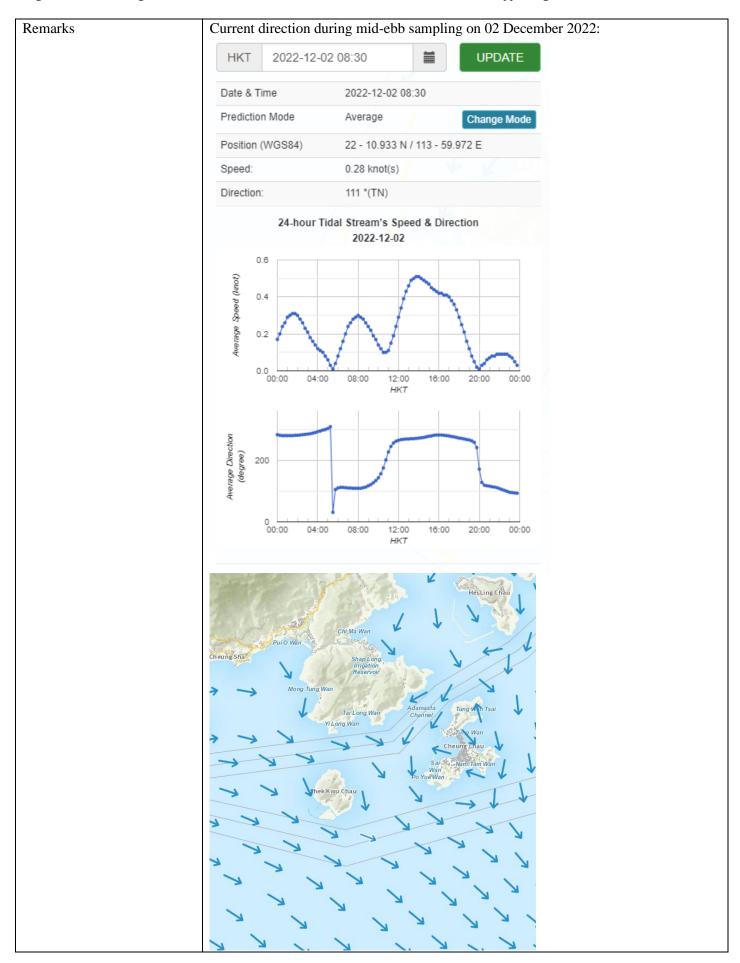
Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1		Keppel Seghers – Zhen Hua Joint Venture
Appendix N	Exceedance Report	

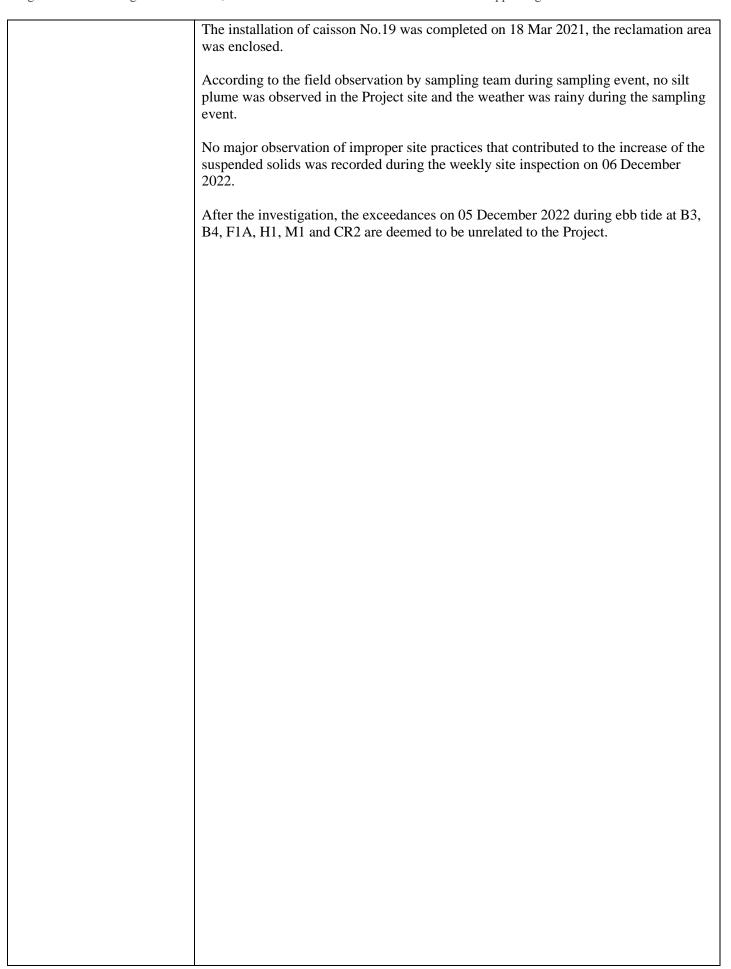
Statistical Summary of Exceedances in the Reporting Period

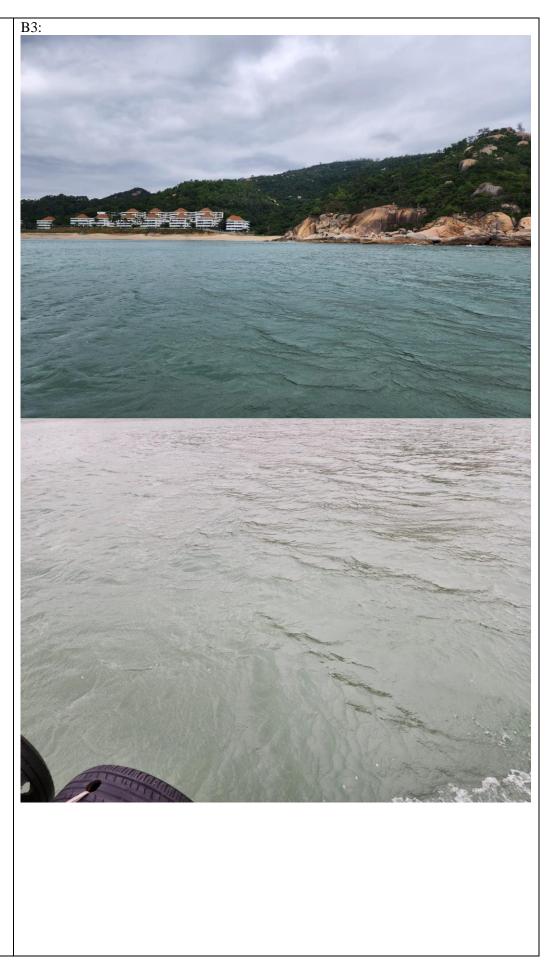

Water Quality (Regular Monitoring)					
Location	Action Level	Limit Level	Total		
B1	2	1	3		
B2	2	1	3		
В3	3	2	5		
B4	1	2	3		
CR1	1	1	2		
CR2	2	2	4		
F1A	1	0	1		
H1	1	2	3		
S1	Not applicable				
S2A	Not applicable				
S3	Not applicable				
M1	1	2	3		

	Noise (Day Time)					
Location	Action Level	Limit Level	Total			
M1	0	0	0			
M2	0	0	0			
M3	0	0	0			
	Noise (Evening Time)					
Location	Action Level	Limit Level	Total			
M1	0	0	0			
M2	0	0	0			
M3	0	0	0			
	Noise (N	ight Time)				
Location	Action Level	Limit Level	Total			
M1	0	0	0			
M2	0	0	0			
M3	0	0	0			

Project	Integrated Waste Management Facilities, Phase 1					
Date	02 December 2022 (Lab result received on 09 December 2022)					
Time	08:00 – 10:39 (Mid-Ebb)					
	Mid-Ebb					
Monitoring Location	+ B1 • S1-	PROPOSED OUTFALL + PROPOSED TECLAIMER FOR THE IMME	H1 SHEK KWU CHAU CR2 S3 CR1	F1A N F1A N N N M1 + C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Parameter	Suspended Solid (SS)					
Action & Limit Levels	Action Level		Limit Level			
retion & Limit Levels	\geq 21.2 mg/L (120% of C1A)		\geq 23.0 mg/L (130% of C1A)		
Measurement Level	Impact Station(s) of Exceedance	Control Stati	ons	Impact Station(s) without Exceedance		
	22.2 mg/L (CR2)	17.7 mg/L (C 18.0 mg/L (C		12.8 mg/L (B1) 16.5 mg/L (B2) 19.3 mg/L (B3) 20.8 mg/L (B4) 19.5 mg/L (H1) 15.0 mg/L (F1A) 19.3 mg/L (M1) 19.3 mg/L (CR1)		
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 02 Dec 2022 include laying of 900kg underlayer rock at Seawall A Seaside CH 20 – CH 70, laying of G200 rockfills at Caisson 46 - 47, transfer of surcharge at zone 6 to flat top barge Hong Kong 3132, piling works, piling works for driven pile, piling works for pre-bored socketed H-pile, pile cap construction blockwork seawall and existing caisson extension, and Process Building construction works. Dominant sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.					
	An exceedance of action leve	el was found at	CR2.			

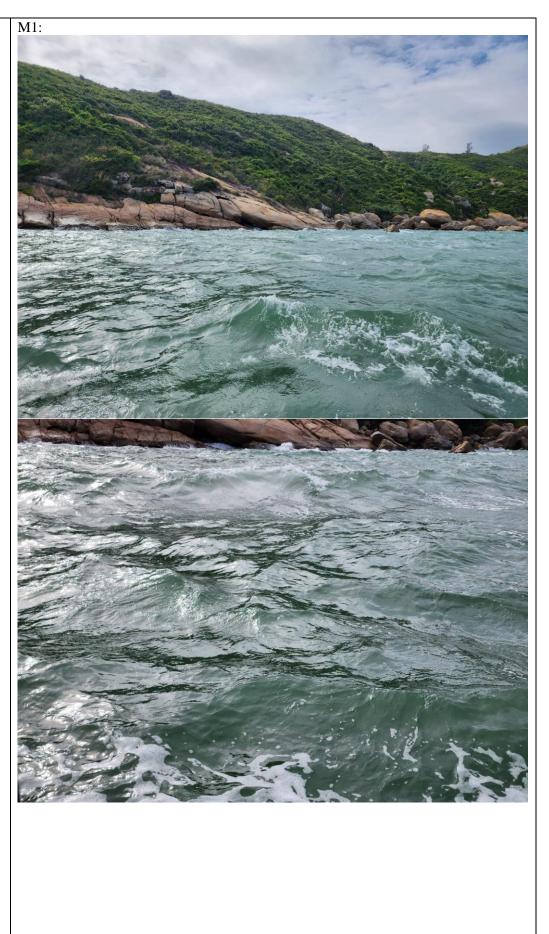
The installation of caisson No.19 was completed on 18 Mar 2021, the reclamation area was enclosed.
According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site and the weather was fine during the sampling event.
No major observation of improper site practices that contributed to the increase of the suspended solids was recorded during the weekly site inspection on 06 December 2022.
After the investigation, the exceedance on 02 December 2022 during ebb tide at CR2 is deemed to be unrelated to the Project.

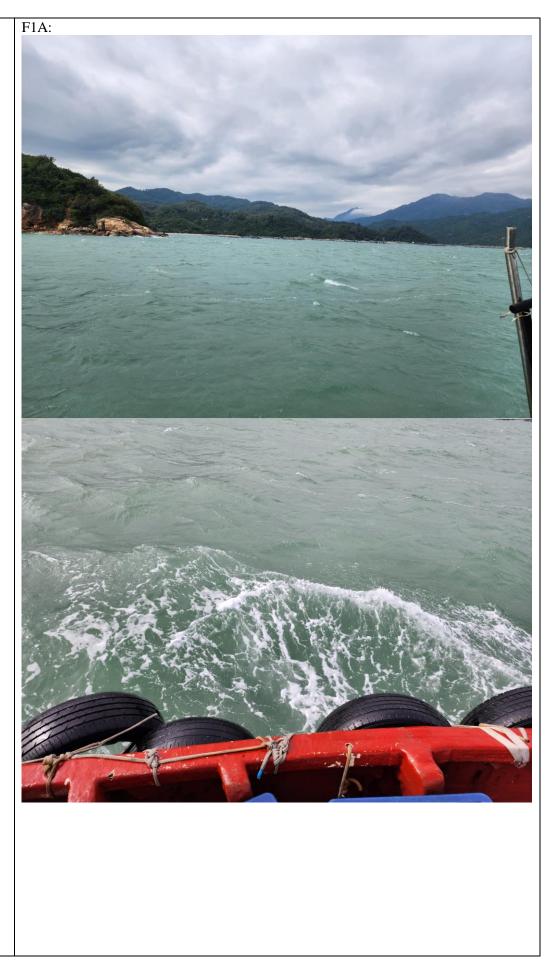

Monitoring photos of stations with exceedance CR2:

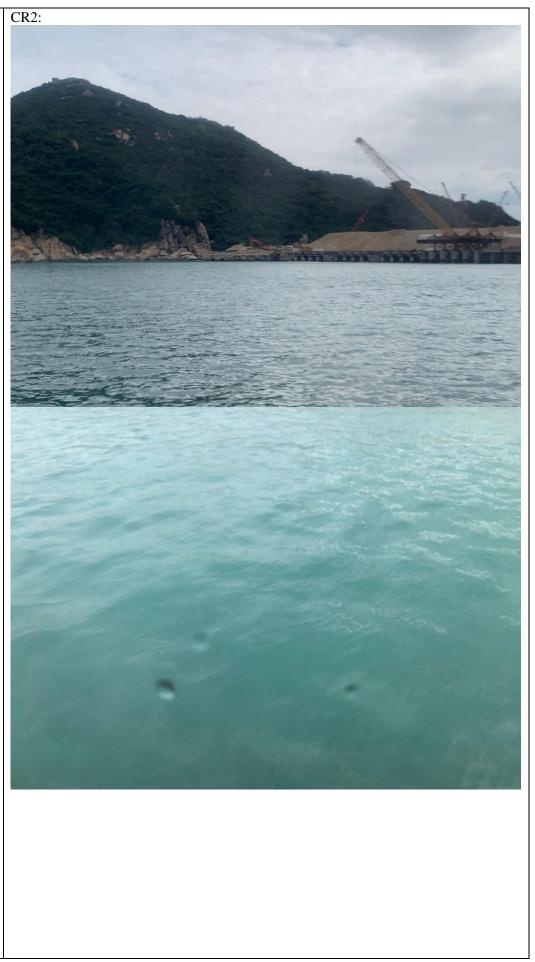

Page 4 of 5

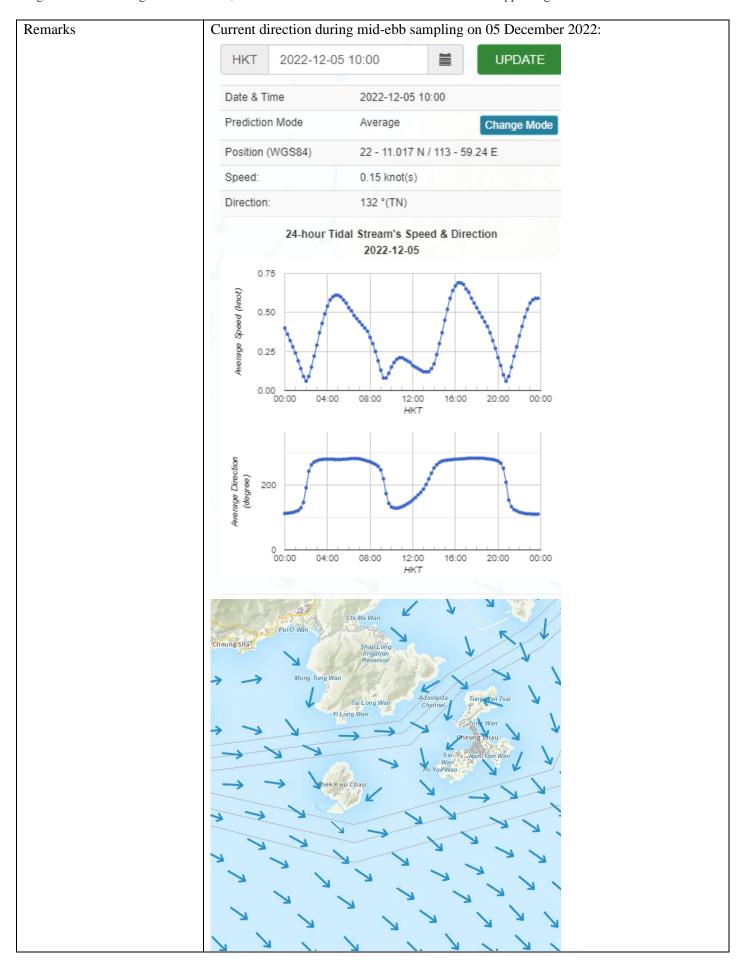
	Legend					
	Speed (knot) Speed (knot)					
	0-0.5	\rightarrow	1.5-2.0	\rightarrow		
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow		
	1.0-1.5		2.5 and above	\rightarrow		
	(Sourced from http://c	current.hy	dro.gov.hk/en/map.ht	ml)		
Prepared by	Jack Chow					
Date	16 December 2022					

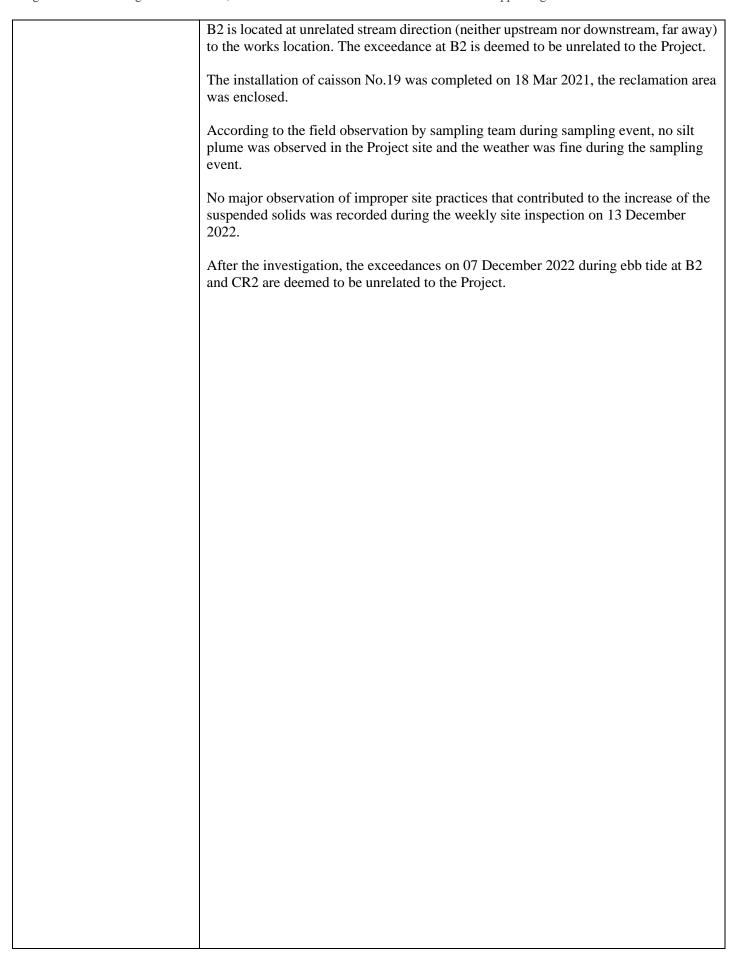
Project	Integrated Waste Management Facilities, Phase 1					
Date	05 December 2022 (Lab result received on 12 December 2022)					
Time	08:45 – 12:15 (Mid-Ebb)					
	Mid-Ebb					
Monitoring Location	B3, B4, F1A, H1, M1, CR2 B10 S1	PROPOSED OUTFALL + PROPOSED 13 SUBMARINE CA PROPOSED RECLAIMER FOR THE IMMIF	SHEK KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
D	0 1 10 1:1(00)					
Parameter	Suspended Solid (SS)		Y Y . 1			
Action & Limit Levels	Action Level		Limit Level			
	≥ 8.0 mg/L	1 -	$\geq 10.0 \text{ mg/L}$	Γ =		
Measurement Level	Impact Station(s) of	Control Station	ons	Impact Station(s) without		
	Exceedance	5.0 /I. (C1	I A \	Exceedance		
	12.4 mg/L (B3) 14.3 mg/L (B4)	5.8 mg/L (C1 11.7 mg/L (C		7.8 mg/L (B1) 6.0 mg/L (B2)		
	9.5 mg/L (H1)	11.7 mg/L (C	2 A)	5.5 mg/L (CR1)		
	11.0 mg/L (M1)			3.3 mg/L (CR1)		
	9.5 mg/L (F1A)					
	12.5 mg/L (CR2)					
	12.5 mg, 2 (Cit2)					
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 05 Dec 2022 include installation of stoppers at Breakwater A CH 1120 A - D, weighing test of 2.5T armour rock, piling works, piling works for driven pile, piling works for pre-bored socketed H-pile, pile cap construction, blockwork seawall and existing caisson extension, and Process Building construction works.					
	Dominant sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau. Exceedances of action level were found at H1 and F1A and exceedances of limit level					
	were found at B3, B4, M1 and CR2.					
	B3, B4, H1, M1 and F1A are downstream) to the works 1 deemed to be unrelated to the	ocation. Excee		_		

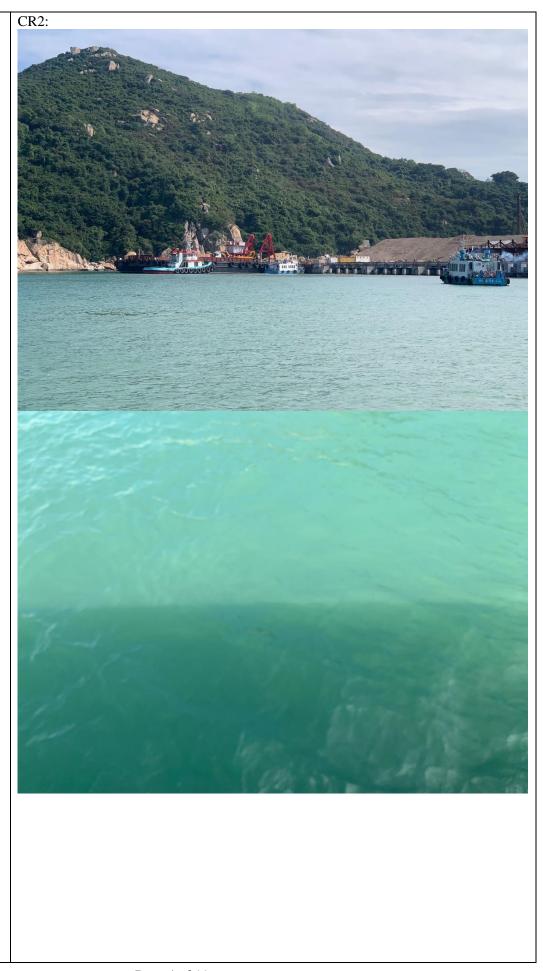



Monitoring photos of stations with exceedance

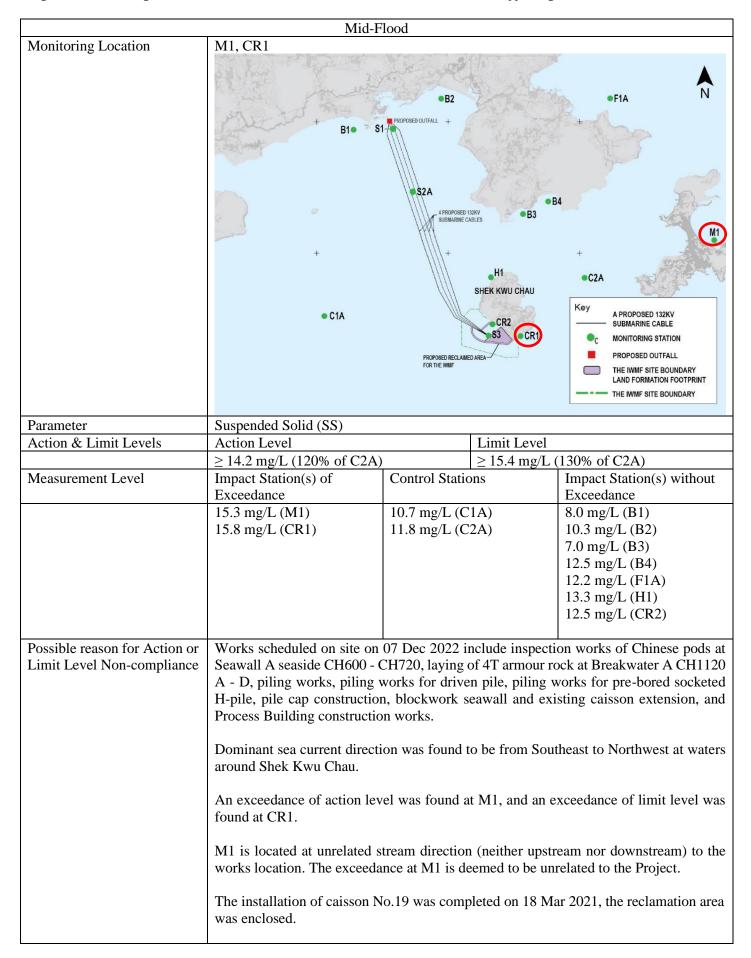




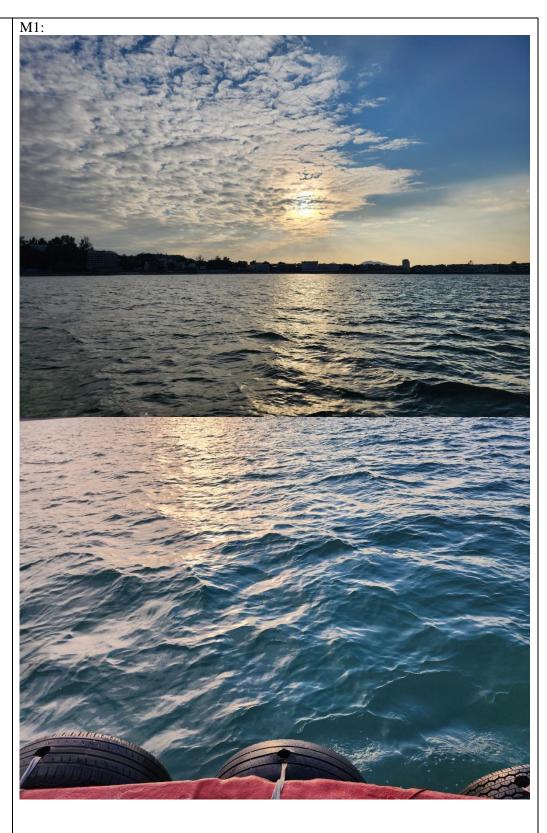


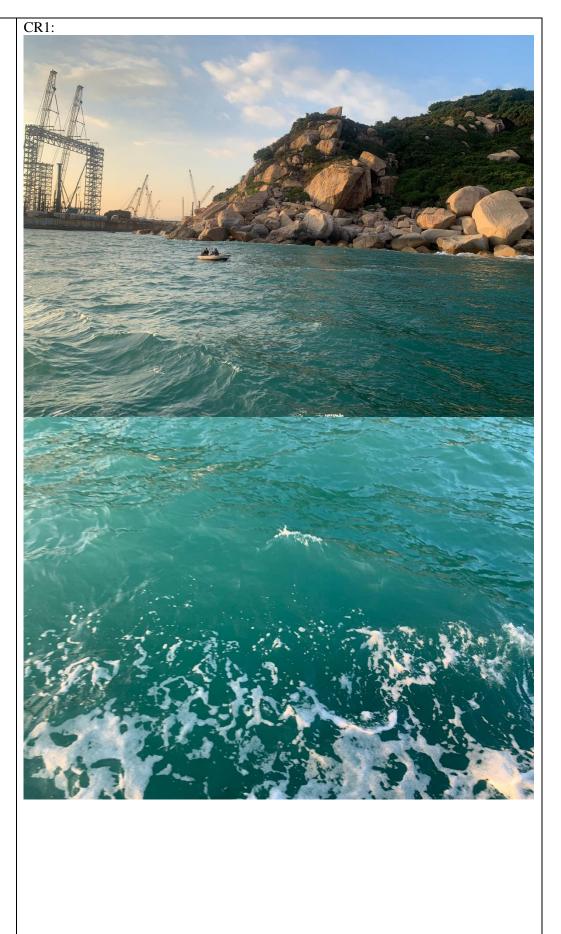


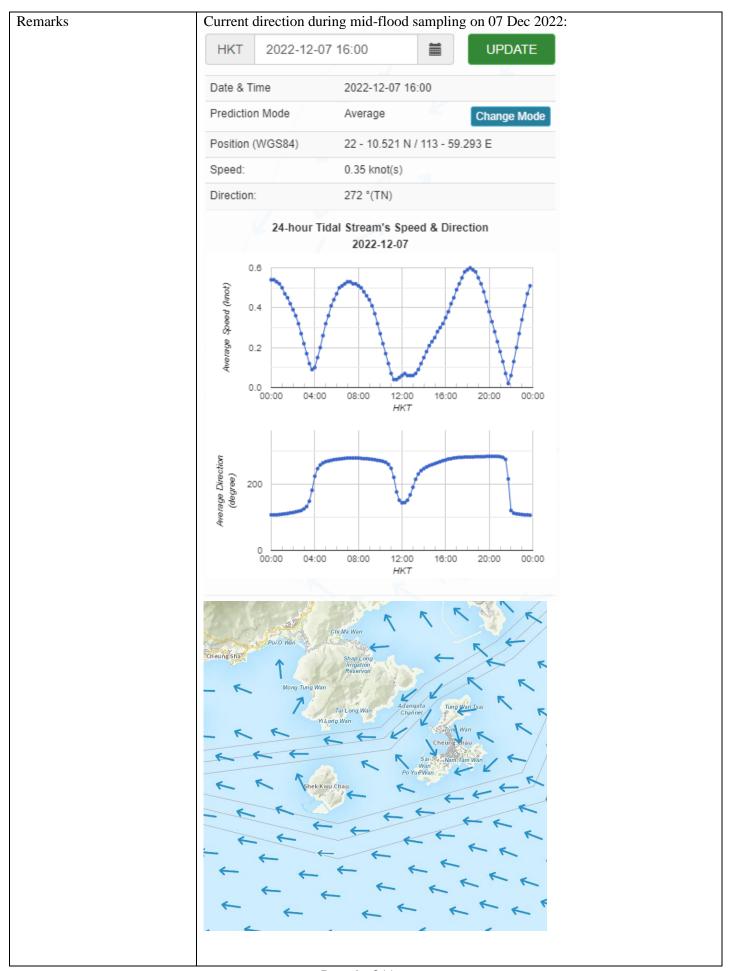
	Legend					
	Speed (knot) Speed (knot)					
	0-0.5	\rightarrow	1.5-2.0	\rightarrow		
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow		
	1.0-1.5		2.5 and above	\rightarrow		
	(Sourced from http://c	current.hy	dro.gov.hk/en/map.ht	ml)		
Prepared by	Jack Chow					
Date	19 December 2022					


Integrated Waste Management Facilities, Phase 1				
07 Dec 2022 (Lab result received on 14 December 2022)				
10:11 – 13:41 (Mid-Ebb)				
15:28 – 18:58 (Mid-Flood)				
	Ebb			
B2, CR2				
+ Bio SI-	SUBMARINE CA	SHEK KWU CHAU	F1A M1 + C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
G				
		T ' ', T 1		
			1200/ 5 (21 1)	
			*	
	Control Station	ons	Impact Station(s) without	
			Exceedance	
	_		7.8 mg/L (B1)	
17.8 mg/L (CR2)	16.7 mg/L (C	(2A)	7.8 mg/L (B3)	
			15.5 mg/L (B4)	
			13.5 mg/L (H1)	
			16.0 mg/L (F1A)	
			15.5 mg/L (M1)	
			16.2 mg/L (CR1)	
Seawall A seaside CH600 - CA - D, piling works, piling w H-pile, pile cap construction Process Building construction Dominant sea current direction around Shek Kwu Chau.	H720, laying of corks for driver, blockwork so works.	of 4T armour room pile, piling we wall and exist to be from North	ck at Breakwater A CH1120 orks for pre-bored socketed ting caisson extension, and nwest to Southeast at waters	
	O7 Dec 2022 (Lab result received 10:11 – 13:41 (Mid-Ebb) 15:28 – 18:58 (Mid-Flood) Mid-E B2, CR2 B1 S1 Suspended Solid (SS) Action Level ≥ 16.8 mg/L (120% of C1A) Impact Station(s) of Exceedance 18.8 mg/L (B2) 17.8 mg/L (CR2) Works scheduled on site on C Seawall A seaside CH600 - C A - D, piling works, piling w H-pile, pile cap construction Process Building construction Dominant sea current directic around Shek Kwu Chau. An exceedance of action level	O7 Dec 2022 (Lab result received on 14 Dec 10:11 – 13:41 (Mid-Ebb) 15:28 – 18:58 (Mid-Flood) Mid-Ebb B2, CR2 Suspended Solid (SS) Action Level ≥ 16.8 mg/L (120% of C1A) Impact Station(s) of Exceedance 18.8 mg/L (B2) 17.8 mg/L (CR2) Works scheduled on site on 07 Dec 2022 in Seawall A seaside CH600 - CH720, laying of A - D, piling works, piling works for drive H-pile, pile cap construction, blockwork so Process Building construction works. Dominant sea current direction was found to around Shek Kwu Chau. An exceedance of action level was found at	Suspended Solid (SS) Action Level ≥ 16.8 mg/L (120% of C1A) Impact Station(s) of Exceedance 18.8 mg/L (B2) 17.8 mg/L (CR2) Works scheduled on site on 07 Dec 2022 include inspection in the second second in the second in	

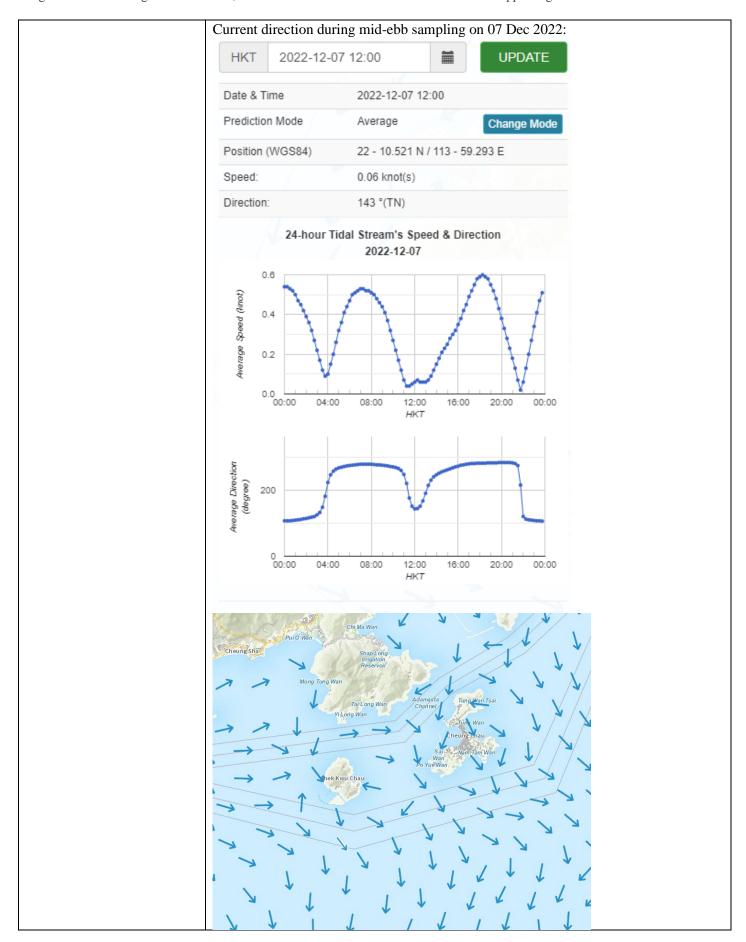
Monitoring photos of stations with exceedance B2:

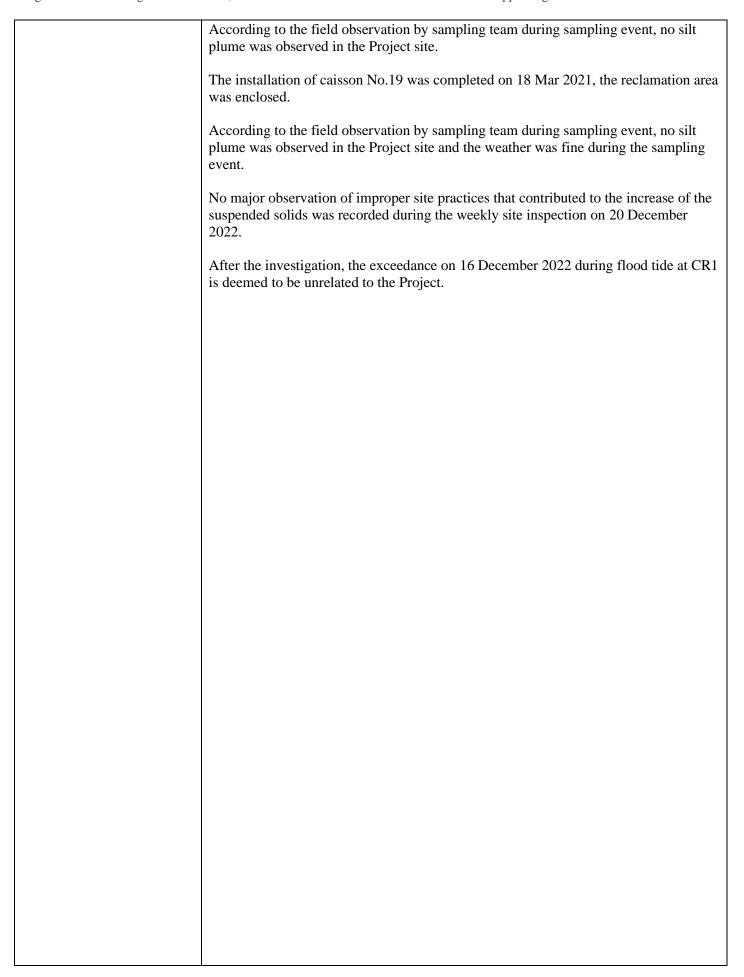



Page 4 of 11

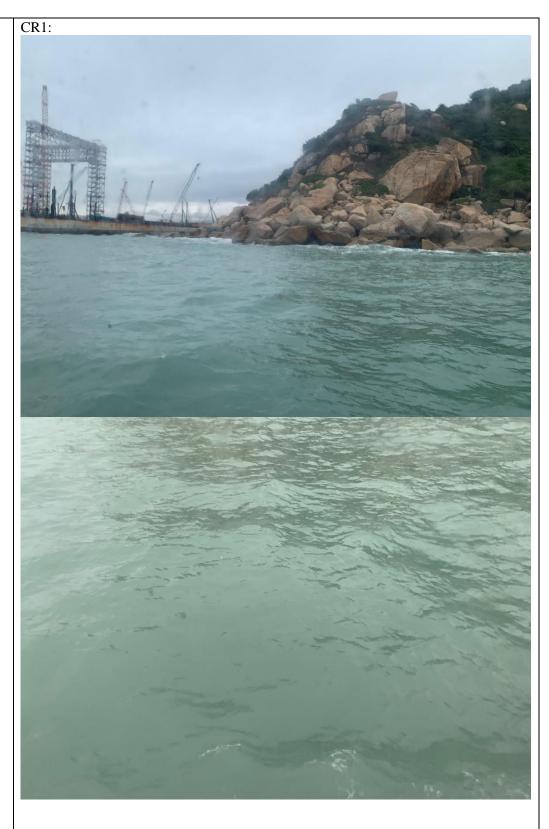


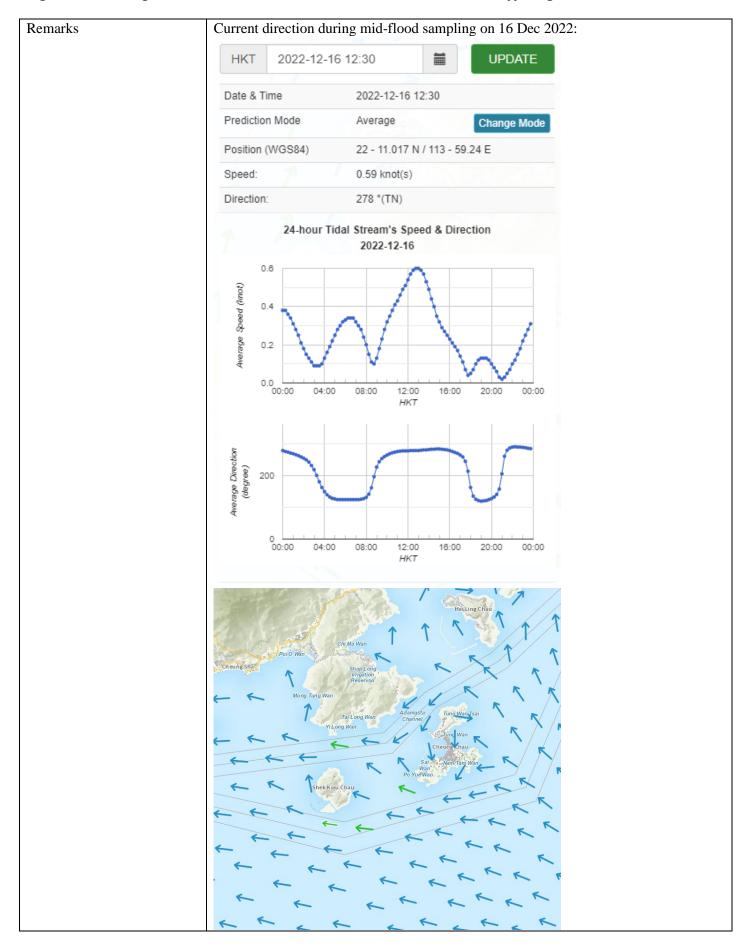
According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site and the weather was fine during the sampling event.
No major observation of improper site practices that contributed to the increase of the suspended solids was recorded during the weekly site inspection on 13 December 2022.
After the investigation, the exceedances on 07 December 2022 during flood tide at M1 and CR1 are deemed to be unrelated to the Project.


Monitoring photos of stations with exceedance



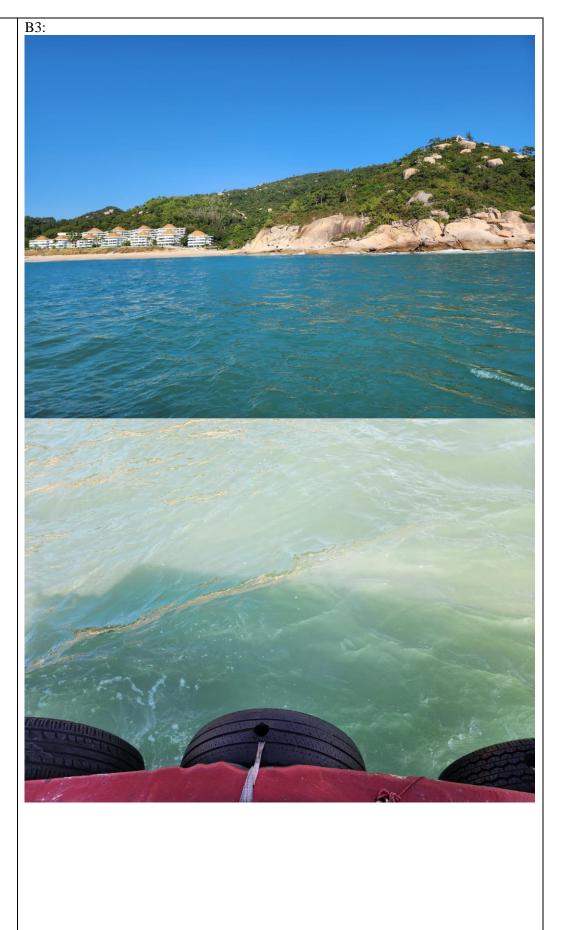
Page 9 of 11

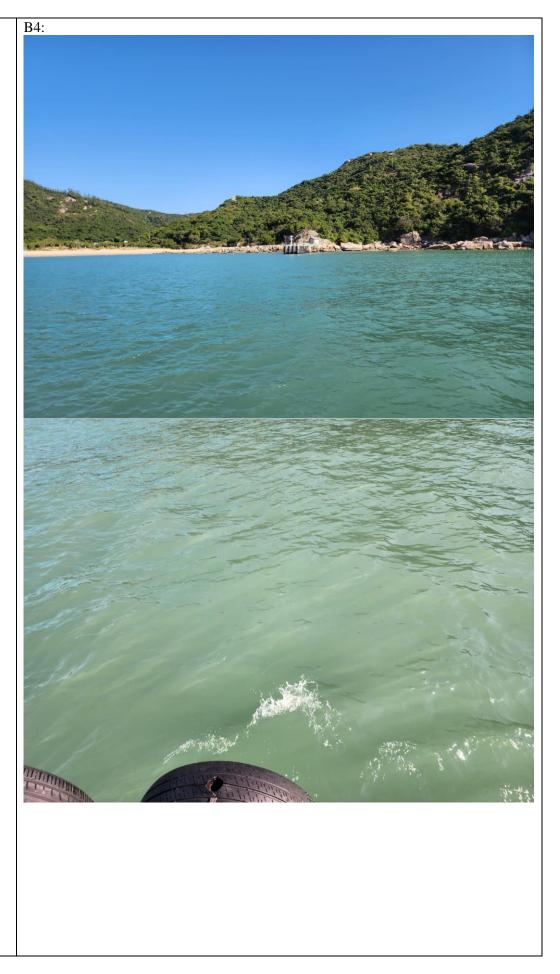



		Legend				
	Speed (knot) Speed (knot)					
	0-0.5	\rightarrow	1.5-2.0	\rightarrow		
	0.5-1.0	1.0 → 2.0-2.5 →		\rightarrow		
	1.0-1.5		2.5 and above	\rightarrow		
	(Sourced from http://current.hydro.gov.hk/en/map.html)					
Prepared by	Jack Chow					
Date	19 Dec 2022					

Project	Integrated Waste Management Facilities, Phase 1						
Date	16 Dec 2022 (Lab result rece	ived on 23 De	cember 2022)				
Time	11:56 – 15:26 (Mid-Flood)						
	Mid-Flood						
Monitoring Location	+ B1 • S1-	PROPOSED OUTFALL + PROPOSED RECLAM FOR THE IMME	H1 SHEK KWU CHAU CR2 S3 CR1	F1A M1 C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED 01FALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY			
Parameter	Suspended Solid (SS)						
Action & Limit Levels	Action Level		Limit Level				
Action & Limit Levels			$\geq 10.0 \text{ mg/L}$				
Possible reason for Action or Limit Level Non-compliance	≥ 8.0 mg/L Impact Station(s) of Exceedance 8.7 mg/L (CR1) Works scheduled on site on Seawall A seaside CH300 - seaside CH480 - CH570, layir - CH1100, piling works, pilic socketed H-pile, pile cap extension, and Process Building	CH400, inspeting of 2.5T arriling works for construction, ing construction	include laying ection works of mour rock at Bror driven pile, blockwork sea on works.	Chinese pods at Seawall A eakwater A seaside CH1000 piling works for pre-bored awall and existing caisson			
	around Shek Kwu Chau. An exceedance of action leve	el was found a	t CR1.				

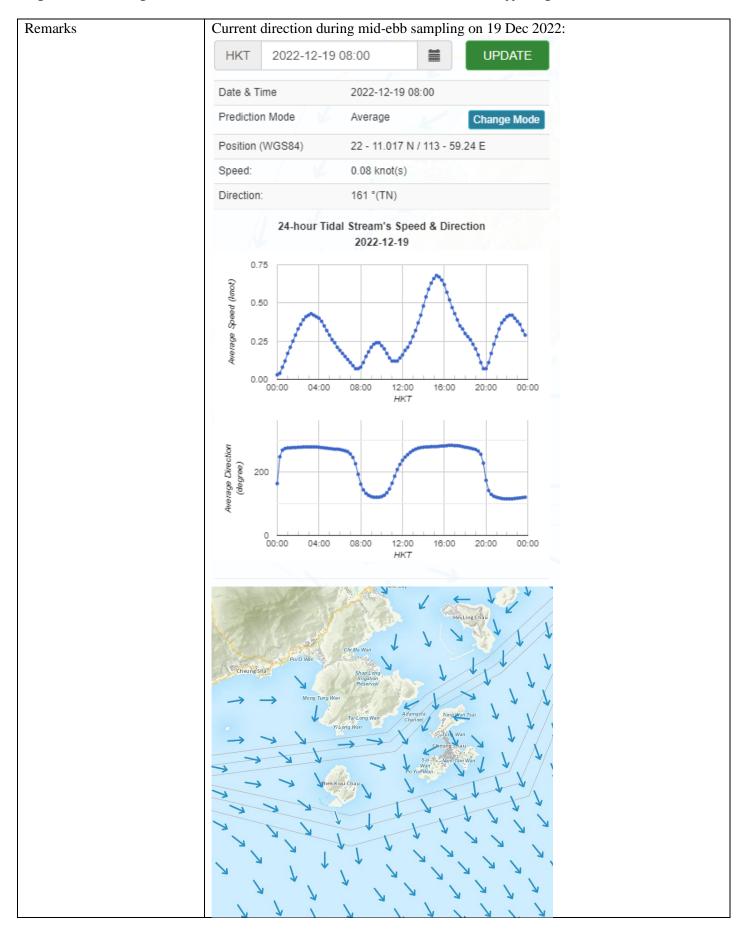
Monitoring photos of stations with exceedance

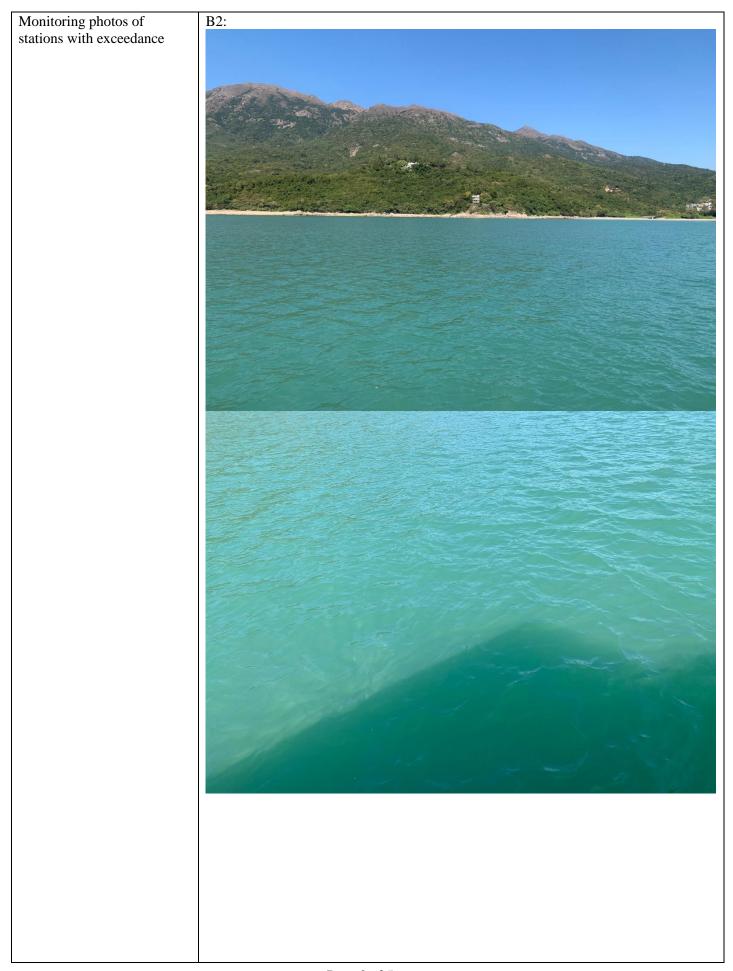


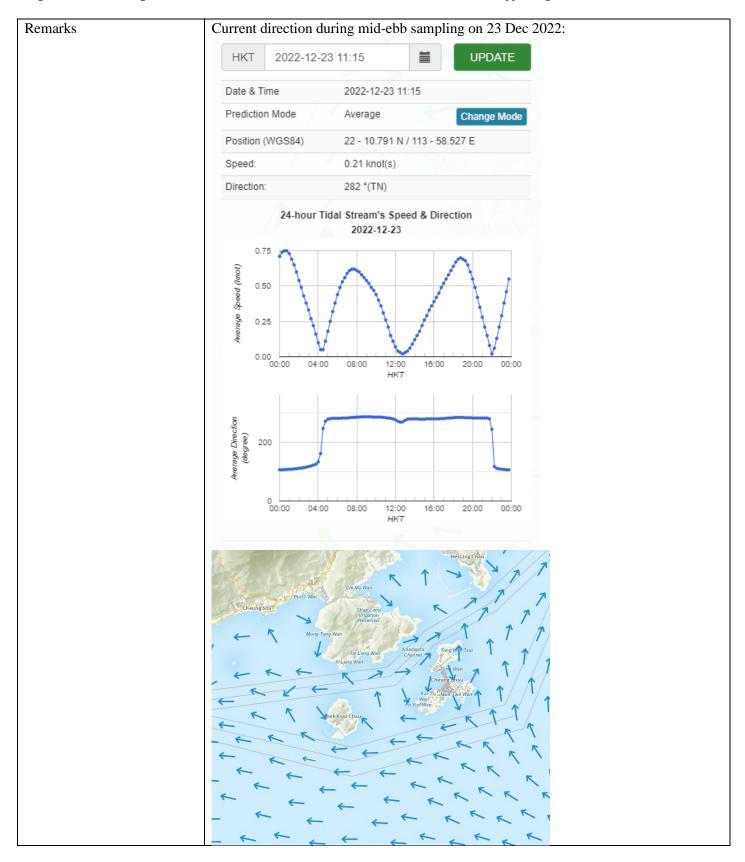

	Legend					
	Speed (knot)		Speed (knot)			
	0-0.5	\rightarrow	1.5-2.0	\rightarrow		
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow		
	1.0-1.5		2.5 and above	\rightarrow		
	(Sourced from http://current.hydro.gov.hk/en/map.html)					
Prepared by	Jack Chow					
Date	3 Jan 2023					

Project	Integrated Waste Management Facilities, Phase 1						
Date	19 Dec 2022 (Lab result received on 30 December 2022)						
Time	08:00 – 11:12 (Mid-Ebb)						
	Mid-Ebb						
Monitoring Location	B3, B4, H1, M1 B1 C1A	PROPOSED OUTFALL + PROPOSED RECLAIM FOR THE IMME	SHEK KWU CHAU CR2 S3 CR1	F1A N F1A N N F1A N N N N N N N N N N N N N			
Donomoton	C						
Parameter Action & Limit Levels	Suspended Solid (SS) Action Level Limit Level						
Action & Limit Levels	Action Level ≥ 8.2 mg/L (120% of C1A)		≥ 10.0 mg/L				
Measurement Level	Impact Station(s) of	Control Stati		Impact Station(s) without			
Wedstrement Level	Exceedance	Control Stations		Exceedance			
	11.0 mg/L (B3)	6.8 mg/L (C1A)		8.0 mg/L (B1)			
	20.8 mg/L (B4)	8.2 mg/L (C2A)		6.3 mg/L (B2)			
	16.7 mg/L (H1)			7.5 mg/L (F1A)			
	10.3 mg/L (M1)			6.8 mg/L (CR1)			
				5.7 mg/L (CR2)			
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 19 Dec 2022 include laying of 500kg underlayer rock Breakwater B landside CH200, laying of 2.5T armour rock at Breakwater A seaside CH1000 - CH1050, laying of 900kg underlayer rock at Seawall A seaside CH330 CH430, piling works, piling works for driven pile, piling works for pre-bored sockete H-pile, pile cap construction, blockwork seawall and existing caisson extension, ar Process Building construction works. Dominant sea current direction was found to be from Northwest to Southeast at water around Shek Kwu Chau. Exceedances of limit level were found at B3, B4, H1 and M1. B3, B4, H1 and M1 at located at unrelated stream direction (neither upstream nor downstream) to the world location.						


According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site. The installation of caisson No.19 was completed on 18 Mar 2021, the reclamation area was enclosed. According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site and the weather was fine during the sampling event. No major observation of improper site practices that contributed to the increase of the suspended solids was recorded during the weekly site inspection on 20 December 2022. After the investigation, the exceedances on 19 December 2022 during ebb tide at B3, B4, H1 and M1 are deemed to be unrelated to the Project.


Monitoring photos of stations with exceedance



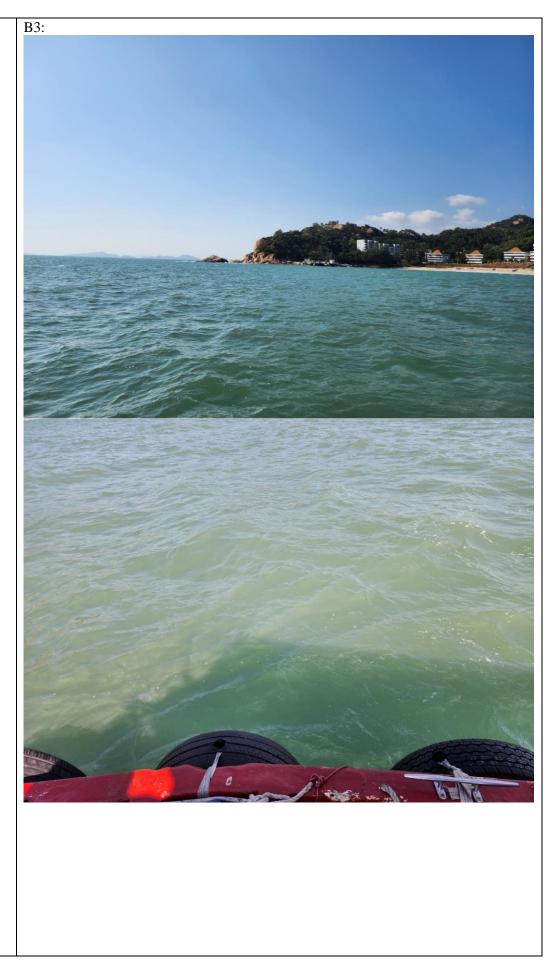


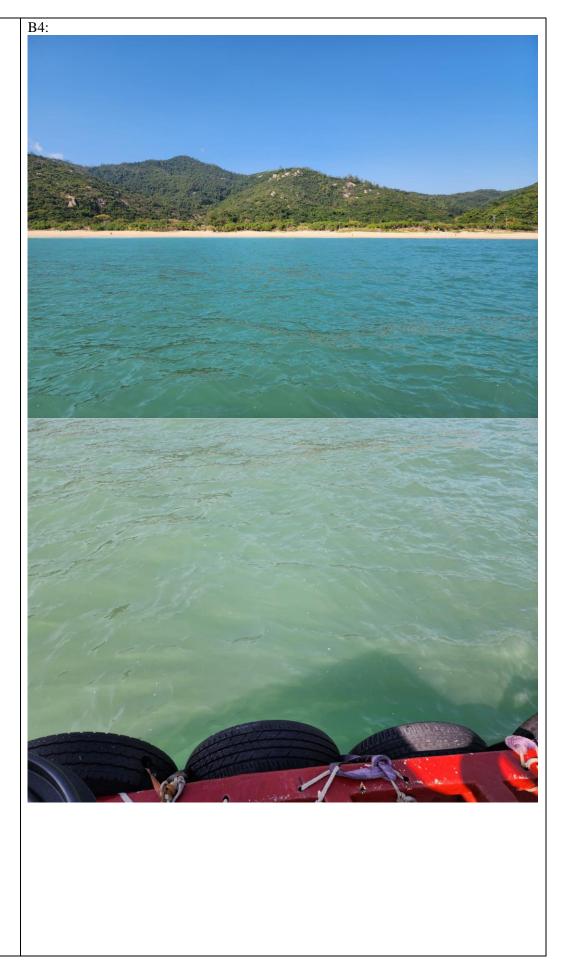
	Legend			
	Speed (knot)		Speed (knot)	
	0-0.5	\rightarrow	1.5-2.0	\rightarrow
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow
	1.0-1.5		2.5 and above	\rightarrow
	(Sourced from http://c	current.hy	dro.gov.hk/en/map.ht	ml)
Prepared by	Jack Chow			
Date	5 Jan 2023			

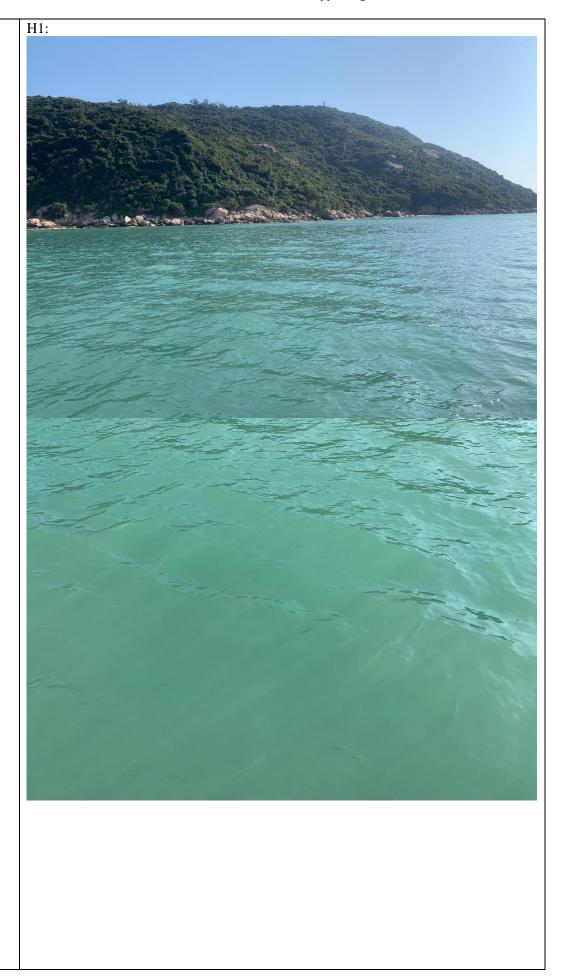
Project	Integrated Waste Management Facilities, Phase 1			
Date	23 Dec 2022 (Lab result received on 31 December 2022)			
Time	11:09 – 13:51 (Mid-Ebb)			
	Mid-E	Ebb		
Monitoring Location	B2 + B1 • C1A	PROPOSED OUTFALL. + 4 PROPOSED 132KV SUBMARBNE CABLES B3 H1 SHEK KWU CHAU CR2 S3 CR1 PROPOSED RECLAIMED AREA FOR THE IMMF	F1A M1 C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Level		
	\geq 10.2 mg/L (120% of C1A)		130% of C1A)	
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance		Exceedance	
	10.3 mg/L (B2)	8.5 mg/L (C1A) 8.2 mg/L (C2A)	6.3 mg/L (B1) 7.5 mg/L (B3) 6.8 mg/L (B4) 6.5 mg/L (H1) 7.2 mg/L (M1) 8.5 mg/L (F1A) 7.7 mg/L (CR1) 7.2 mg/L (CR2)	
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 23 Dec 2022 include laying of 900kg underlayer rock at Breakwater B landside CH940, laying of 900kg underlayer rock at Seawall A seaside CH550 - CH670, laying of 2.5T armour rock at Breakwater A seaside CH1000 - CH1100, piling works, piling works for driven pile, piling works for pre-bored socketed H-pile, pile cap construction, blockwork seawall and existing caisson extension, and Process Building construction works. Dominant sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. An exceedance of action level was found at B2. B2 is located at unrelated stream direction (neither upstream nor downstream) to the works location.			

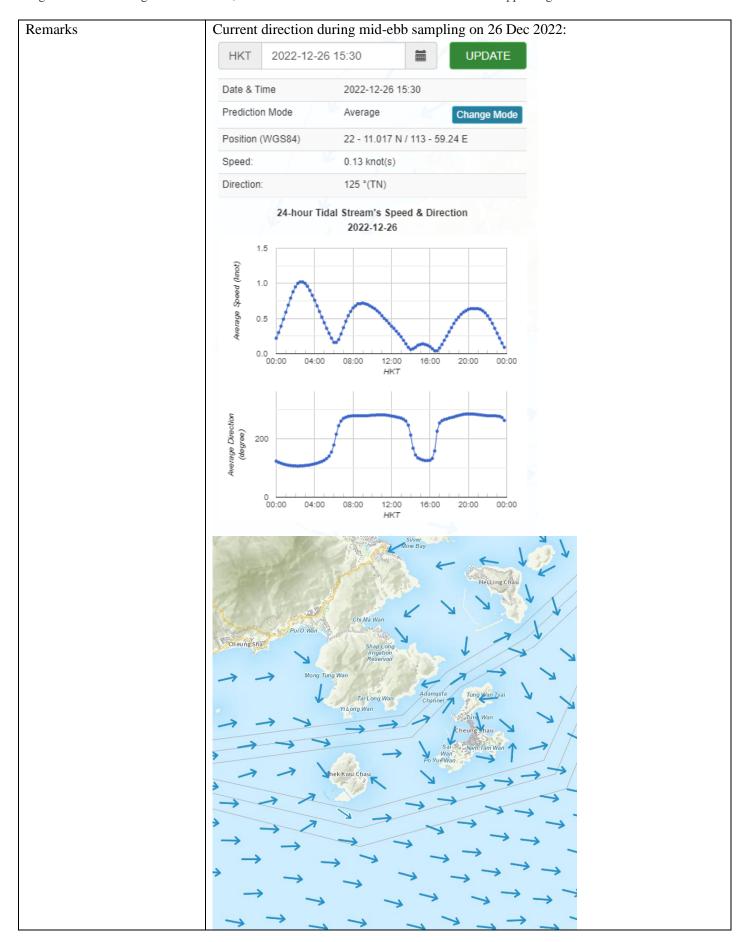
According to the field observation by sampling team during sampling event, no silt
plume was observed in the Project site. The installation of caisson No.19 was completed on 18 Mar 2021, the reclamation area
was enclosed.
According to the field observation by sampling team during sampling event, no silt
plume was observed in the Project site and the weather was fine during the sampling
event.
No major observation of improper site practices that contributed to the increase of the suspended solids was recorded during the weekly site inspection on 28 December 2022.
After the investigation, the exceedance on 23 December 2022 during ebb tide at B2 is
deemed to be unrelated to the Project.

	Legend			
	Speed (knot)		Speed (knot)	
	0-0.5	\rightarrow	1.5-2.0	\rightarrow
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow
	1.0-1.5		2.5 and above	\rightarrow
	(Sourced from http://c	current.hy	dro.gov.hk/en/map.ht	ml)
Prepared by	Jack Chow			
Date	6 Jan 2023			

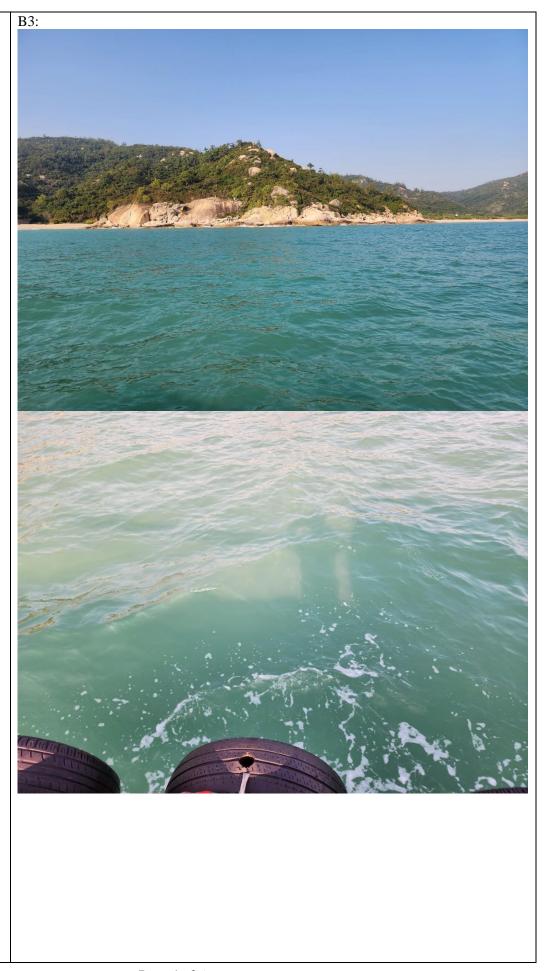

Project	Integrated Waste Management Facilities, Phase 1			
Date	26 Dec 2022 (Lab result received on 31 December 2022)			
Time	13:22 – 16:27 (Mid-Ebb)			
	Mid-E	Ebb		
Monitoring Location	B1, B2, B3, B4, H1 B1 **C1A	PROPOSED OUTFALL + PROPOSED I SUBMARINE CA PROPOSED RECLAIME FOR THE IMMF	SHEK KWU CHAU	F1A M1 + C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
Action & Limit Levels				
Measurement Level	\geq 8.0 mg/L Impact Station(s) of	Control Stati	$\geq 10.0 \text{ mg/L}$	Impact Station(s) without
Weasurement Level	Exceedance	Connoi Stan	Olis	Exceedance
	9.8 mg/L (B1)	6.0 mg/L (C	ΙΔ)	7.7 mg/L (M1)
	8.5 mg/L (B2)	6.5 mg/L (C2		7.7 mg/L (W17) 7.3 mg/L (F1A)
	8.8 mg/L (B3)	0.5 mg/L (C.	211)	6.0 mg/L (CR1)
	9.5 mg/L (B4)			6.3 mg/L (CR2)
	11.3 mg/L (H1)			0.5 mg/2 (0.1.2)
	110 1119/2 (111)			
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 26 Dec 2022 include laying of 4.0T armour rock at Breakwater A landside Caisson 65, laying of 900kg underlayer rock at Seawall A seaside CH590 - CH700, piling works, piling works for pre-bored socketed H-pile, pile cap construction, blockwork seawall and existing caisson extension, and Process Building construction works. Dominant sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau. Exceedances of action level were found at B1, B2, B3 and B4, and an exceedance of limit level was found at H1. B1, B2, B3, B4 and H1 are located at unrelated stream direction (neither upstream nor downstream) to the works location. According to the field observation by sampling team during sampling event, no silt			
	plume was observed in the Pr		inig wani uurili	g sampling event, 110 stit

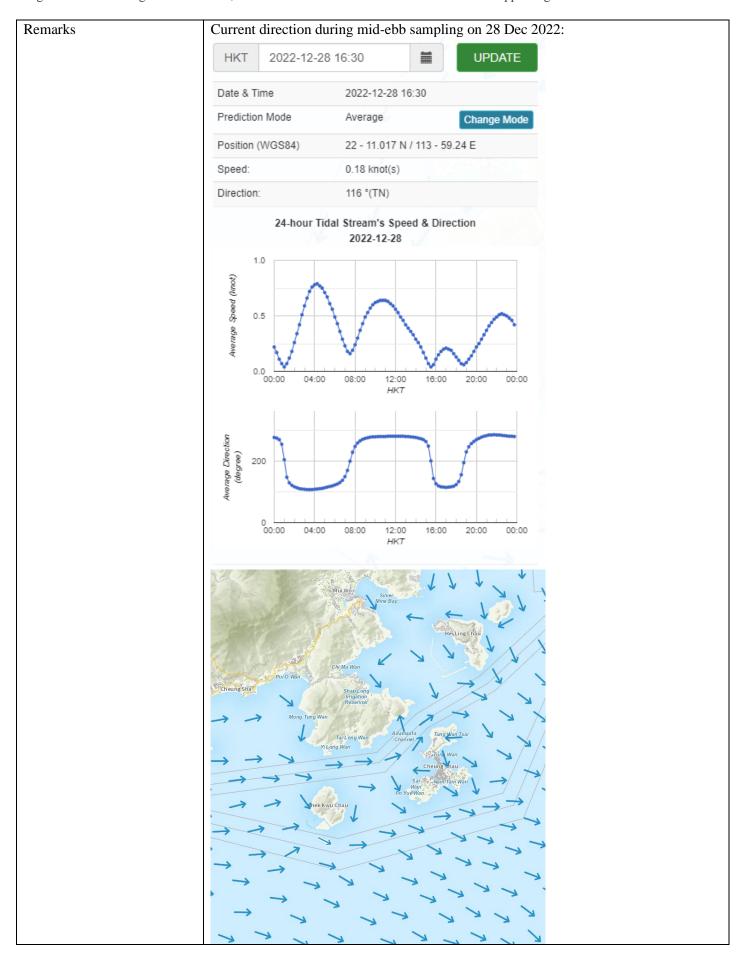

The installation of caisson No.19 was completed on 18 Mar 2021, the reclamation area was enclosed.
According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site and the weather was fine during the sampling event.
No major observation of improper site practices that contributed to the increase of the suspended solids was recorded during the weekly site inspection on 28 December 2022.
After the investigation, the exceedances on 26 December 2022 during ebb tide at B1, B2, B3, B4 and H1 are deemed to be unrelated to the Project.


Monitoring photos of stations with exceedance B1:



Page 4 of 9

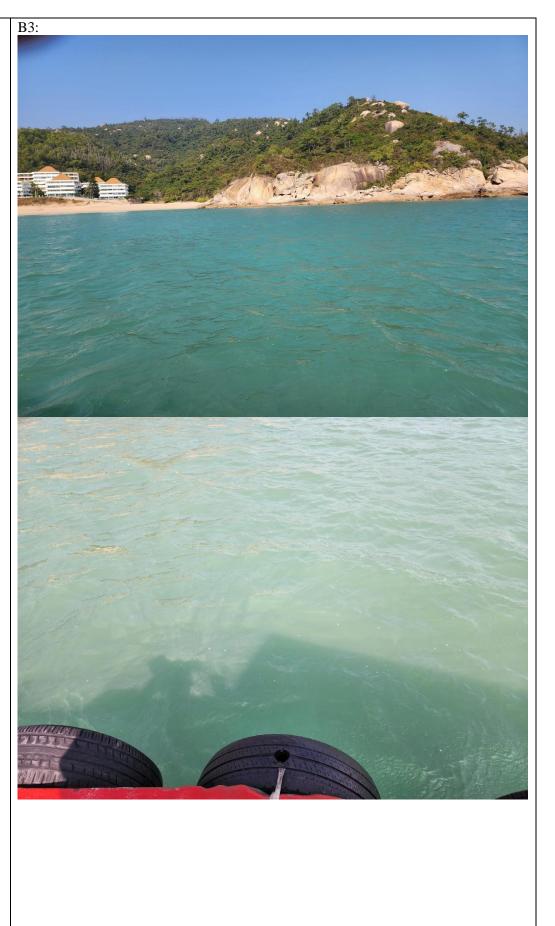


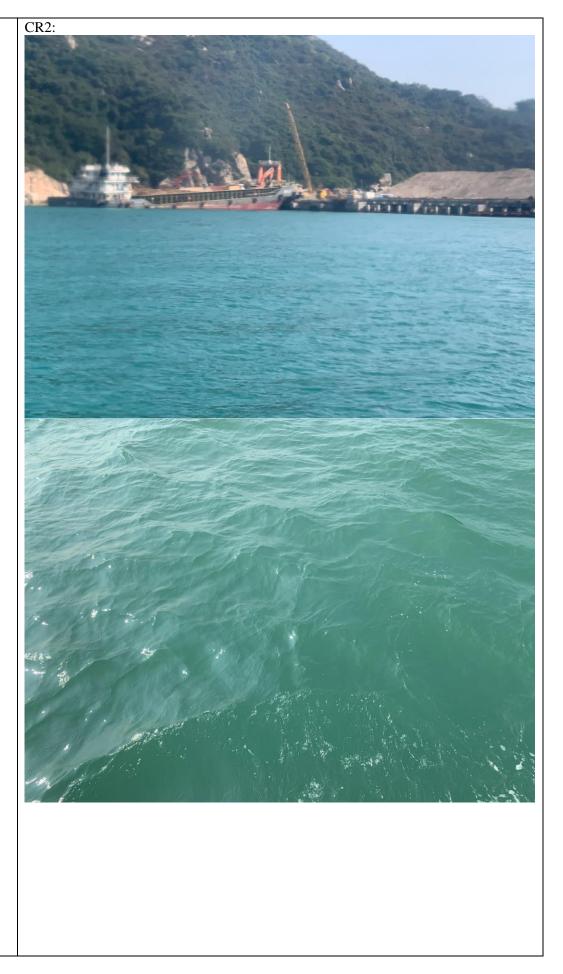

	Legend			
	Speed (knot)		Speed (knot)	
	0-0.5	\rightarrow	1.5-2.0	\rightarrow
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow
	1.0-1.5		2.5 and above	\rightarrow
	(Sourced from http://c	current.hy	dro.gov.hk/en/map.ht	ml)
Prepared by	Jack Chow			
Date	6 Jan 2023			

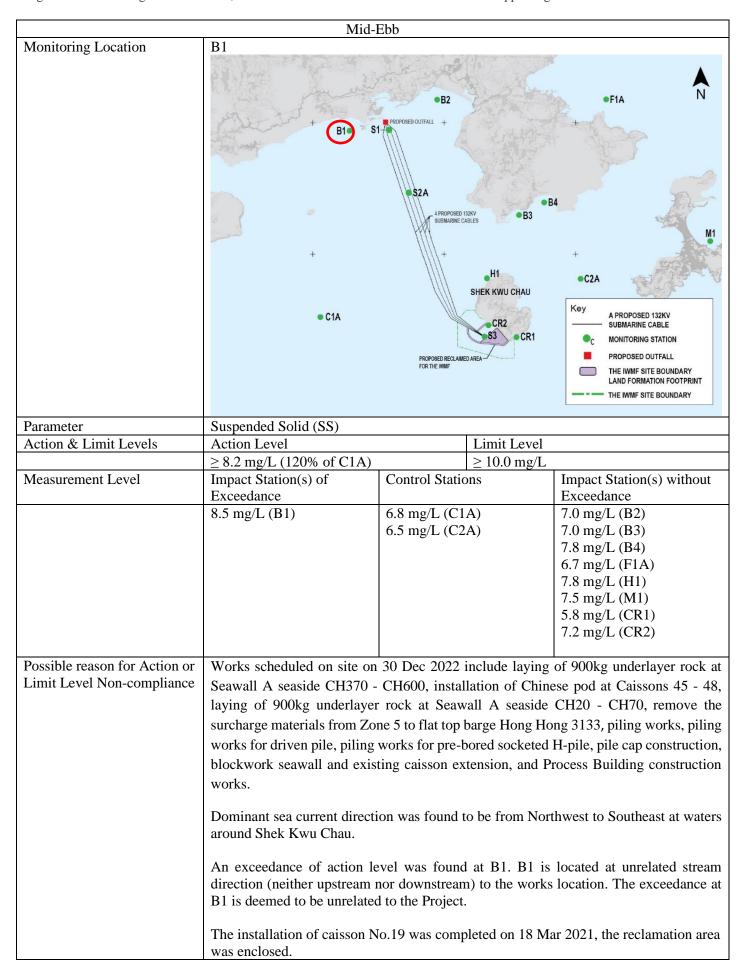
Project	Integrated Waste Management Facilities, Phase 1			
Date	28 Dec 2022 (Lab result received on 04 January 2023)			
Time	15:07 – 18:12 (Mid-Ebb)			
	Mid-E	Ebb		
Monitoring Location	# B1 S1	PROPOSED OUTFALL + PROPOSED 1: PROPOSED RECLAIME FOR THE IMMIF	H1 SHEK KWU CHAU CR2 S3 CR1	F1A M1 + C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
Action & Limit Levels	$\geq 8.0 \text{ mg/L}$		$\geq 10.0 \text{ mg/L}$	
Measurement Level	Impact Station(s) of Exceedance	Control Stati		Impact Station(s) without Exceedance
	11.5 mg/L (B1) 8.0 mg/L (B3)	4.5 mg/L (C1A) 4.5 mg/L (C2A) 7.3 mg/L (B2) 4.8 mg/L (B4) 5.8 mg/L (H1) 5.3 mg/L (M1) 4.5 mg/L (F1A) 3.4 mg/L (CR1) 3.1 mg/L (CR2)		4.8 mg/L (B4) 5.8 mg/L (H1) 5.3 mg/L (M1) 4.5 mg/L (F1A) 3.4 mg/L (CR1)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 28 Dec 2022 include laying of 4.0T armour rock at Breakwater A landside Caisson 65, laying of G200 rockfill at Caisson 47, piling works, piling works for pre-bored socketed H-pile, pile cap construction, blockwork seawall and existing caisson extension, and Process Building construction works. Dominant sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau. An exceedance of action level was found at B3, and an exceedance of limit level was found at B1. B1 and B3 are located at unrelated stream direction (neither upstream nor downstream) to the works location.			

The installation of caisson No.19 was completed on 18 Mar 2021, the reclamation area was enclosed.
According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site and the weather was sunny during the sampling event.
No major observation of improper site practices that contributed to the increase of the suspended solids was recorded during the weekly site inspection on 28 December 2022.
After the investigation, the exceedances on 28 December 2022 during ebb tide at B1 and B3 are deemed to be unrelated to the Project.

Monitoring photos of stations with exceedance B1:

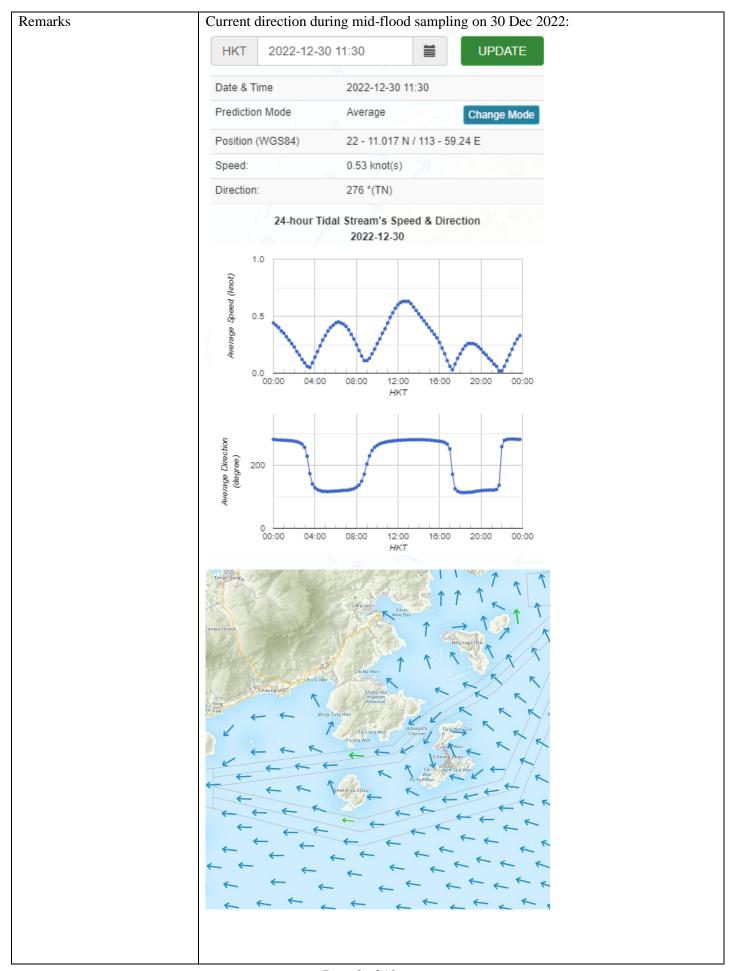


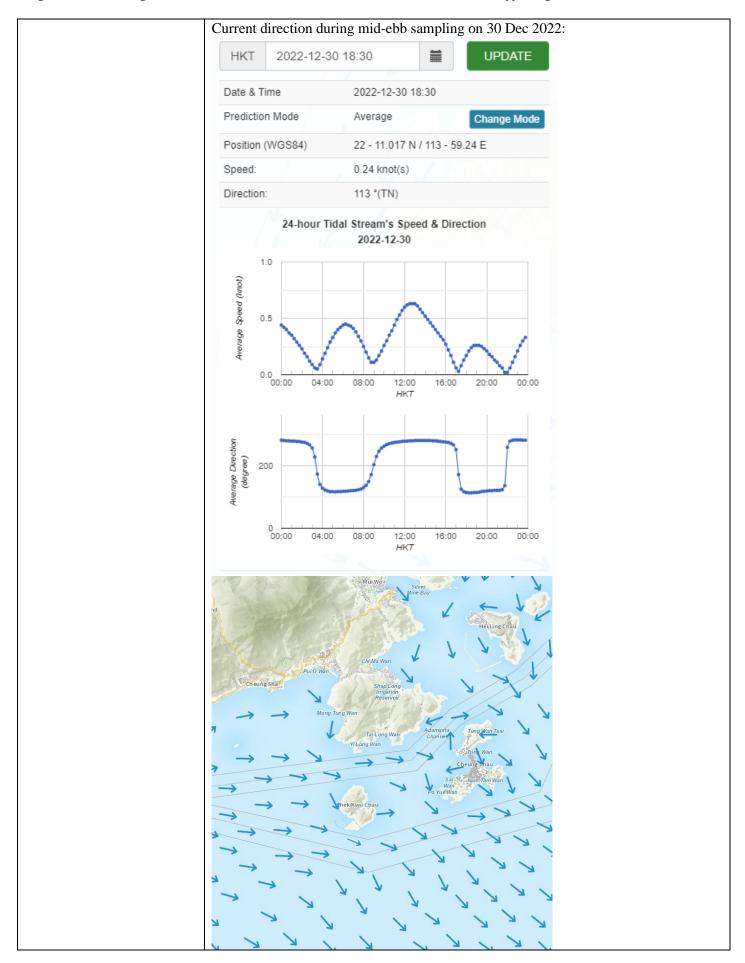

	Legend			
	Speed (knot)		Speed (knot)	
	0-0.5	\rightarrow	1.5-2.0	\rightarrow
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow
	1.0-1.5		2.5 and above	\rightarrow
	(Sourced from http://c	current.hy	dro.gov.hk/en/map.ht	ml)
Prepared by	Jack Chow			
Date	6 Jan 2023			


Project	Integrated Waste Management Facilities, Phase 1			
Date	30 Dec 2022 (Lab result received on 06 January 2023)			
Time	11:11 – 14:41 (Mid-Flood)	11:11 – 14:41 (Mid-Flood)		
	17:08 – 19:00 (Mid-Ebb)			
	Mid-Fl	ood		
Monitoring Location	B3, CR2			
	+ B1 S1-	PROPOSED OUTFALL 4 PROPOSED 13 SUBMARINE CA PROPOSED RECLAIMER FOR THE IMME	H1 SHEK KWU CHAU CR2 CR1	F1A M1 + C2A Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
D	g 1 1 g 1: 1 (gg)			
Parameter	Suspended Solid (SS)		T ' '. T 1	
Action & Limit Levels	Action Level		Limit Level	1200/ 5 (22.4.)
N	\geq 9.2 mg/L (120% of C2A)	G . 1 G:	$\geq 10.0 \text{ mg/L}$ (2)	
Measurement Level	Impact Station(s) of Exceedance	Control Stati	ons	Impact Station(s) without Exceedance
		7.2 m ~/L (C1	1.4.)	
	9.8 mg/L (B3)	7.3 mg/L (C1		8.0 mg/L (B1)
	10.5 mg/L (CR2)	7.7 mg/L (C2	2A)	7.8 mg/L (B2)
				8.8 mg/L (B4) 8.3 mg/L (H1)
				8.2 mg/L (F1A)
				5.8 mg/L (M1)
				8.8 mg/L (CR1)
				8.8 mg/L (CK1)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on Seawall A seaside CH370 - laying of 900kg underlayer surcharge materials from Zon works for driven pile, piling v blockwork seawall and exist works. Dominant sea current direction	CH600, install rock at Seaw the 5 to flat top be works for pre-bing caisson ex	lation of Chines all A seaside (parge Hong Hor pored socketed I tension, and Pro	se pod at Caissons 45 - 48, CH20 - CH70, remove the ng 3133, piling works, piling H-pile, pile cap construction, ocess Building construction
	around Shek Kwu Chau.		- ~ .	

An exceedance of action level was found at B3, and an exceedance of limit level was found CR2. B3 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location. The exceedance at B3 is deemed to be unrelated to the Project. The installation of caisson No.19 was completed on 18 Mar 2021, the reclamation area was enclosed. According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site and the weather was fine during the sampling event. No major observation of improper site practices that contributed to the increase of the suspended solids was recorded during the weekly site inspection on 03 January 2023. After the investigation, the exceedances on 30 December 2022 during flood tide at B3 and CR2 are deemed to be unrelated to the Project.

Monitoring photos of stations with exceedance





According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site and the weather was fine during the sampling event.
No major observation of improper site practices that contributed to the increase of the suspended solids was recorded during the weekly site inspection on 03 January 2023.
After the investigation, the exceedance on 30 December 2022 during ebb tide at B1 is deemed to be unrelated to the Project.

Monitoring photos of stations with exceedance B1:

Page 8 of 10

Page 9 of 10

	Legend			
	Speed (knot)		Speed (knot)	
	0-0.5	\rightarrow	1.5-2.0	\rightarrow
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow
	1.0-1.5		2.5 and above	\rightarrow
	(Sourced from http://current.hydro.gov.hk/en/map.html)			
Prepared by	Jack Chow			
Date	10 Jan 2023			