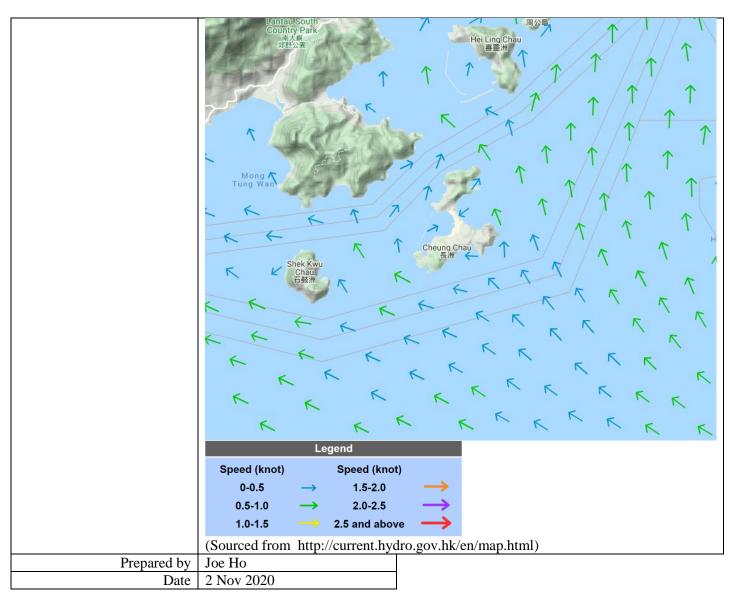

Appendix N Exceedance Report

Integrated Waste Management Facilities, Phase 1

	Water Quality (Regular DCM)				
Location	Action Level	Limit Level	Total		
B1	1	2	3		
B2	2	3	5		
B3	2	3	5		
B4	1	1	2		
CR1	1	4	5		
CR2	0	4	4		
F1A	0	0	0		
H1	0	1	1		
S1	1	1	2		
S2A	1	3	4		
S3	1	2	3		
M1	1	3	4		

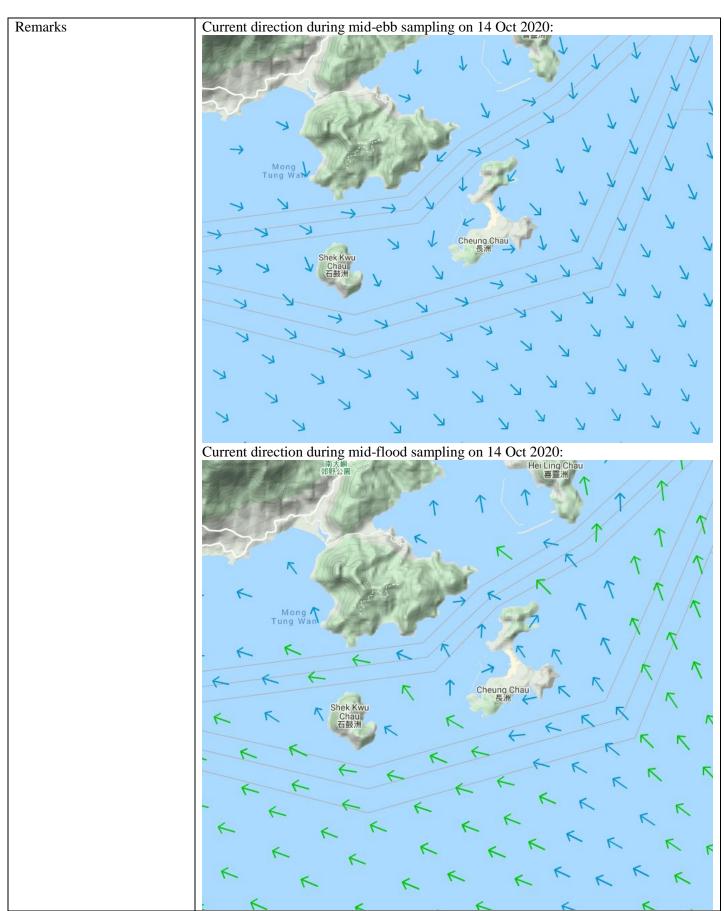
Statistical Summary of Exceedances in the Reporting Period

	Noise (Day Time)				
Location	Action Level	Limit Level	Total		
M1	0	0	0		
M2	0	0	0		
M3	0	0	0		
	Noise (Evening Time)				
Location	Action Level	Limit Level	Total		
M1	0	0	0		
M2	0	0	0		
M3	0	0	0		
	Noise (N	ight Time)			
Location	Action Level	Limit Level	Total		
M1	0	0	0		
M2	0	0	0		
M3	0	0	0		


	1
	From MMO monitoring records on 3 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at western marine access area and the eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. According to the field observation by Marine Mammal Observer team & sampling
	team during sampling event, no silt plume was observed in the Project site.
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 29 Sep 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the
	weekly inspection and the Contractor is reminded to implement all applicable
	mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-ebb sampling on 03 Oct 2020:
	Lantau Island 大映Lu 南天映 双野公園 B Shek Kwu Chau 石鼓洲
	Speed (knot) Speed (knot) $0-0.5 \rightarrow 1.5-2.0 \rightarrow \rightarrow $
	$0.5-1.0 \longrightarrow 2.0-2.5 \longrightarrow$
	1.0-1.5 \longrightarrow 2.5 and above \longrightarrow
	(Sourced from http://current.hydro.gov.hk/en/map.html)
Prepared by	Joe Ho
Date	16 Oct 2020

Project	Integrated Waste Management Facilities, Phase 1					
Date	12 Oct 2020 (Lab result received on 15 Oct 2020)					
Time	08:00 – 11:30 (Mid-Ebb)					
	14:34 – 18:04 (Mid Flood)					
	Mid-Ebb					
Monitoring Location	M1,CR1,CR2					
	+ + • C1A	B2 PCPOPOSED OUTFALL + SZA 4 PCPOPOSED 132N B3 4 4 PCPOPOSED 132N B3 B3 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2	F1A F1A PF			
Domomotor	Suspended Solid (SS)					
Parameter Action & Limit Levels	Suspended Solid (SS) Action Level	Limit Level				
Action & Limit Levels						
N (X 1	$\geq 8.0 \text{ mg/L}$	$\geq 10.0 \text{ mg/L}$				
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without			
	Exceedance		Exceedance			
	8.3 mg/L (M1)	4.0mg/L (C1A)	4.3 mg/L (B1)			
	17.0 mg/L (CR1)	6.3 mg/L (C2A)	5.5 mg/L (B2)			
	12.0 mg/L (CR2)		6.3 mg/L (B3)			
			4.0 mg/L (B4)			
			6.5 mg/L (F1A)			
			5.8 mg/L (H1)			
Possible reason for Action or Limit Level Non-compliance	 Works scheduled on site on 12 Oct 2020 include reclamation works, levelling the slag materials, loading slag materials, laying geotextile, laying of rockfill and caisson installation. Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau. M1 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring station is deemed to be unrelated to the Project. CR1 and CR2 are located close to the works location within the Project site while silt curtain checking by the Contractor was implemented on Marine Access (12 Oct 2020, 08:06am), Eastern Silt Curtain (12 Oct 2020, 08:00am) and GD-851 (12 Oct 2020, 07:00am) and checking results showed that no deficiency of silt curtain was 					

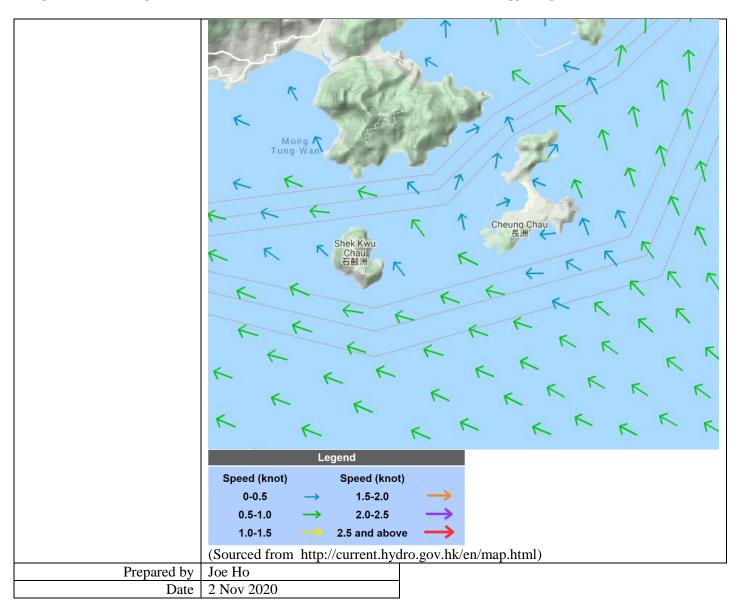
	found on that day.				
	Tound on that day.				
	From MMO monitoring records on 12 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at western marine access area and the eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and during construction activity.				
	According to the field observ team during sampling event,				
	L	No major observation of imp	e checked during weekly site roper site practices that could d.		
	Mid-Fl	lood			
Monitoring Location	B3 + B10 S1-	B2 POPOSED OUTFAIL S2A B3 CR B3 CR B3 CR CR CR CR CR CR CR CR CR CR CR CR CR	F1 F1A F1 F1A C2 C2 M1 C2A Key APROPOSED 132KY SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL PROPOSED OUTFALL PROPOSED OUTFALL FILE IMMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IMMF SITE BOUNDARY		
Deventer	Sugar and a Calid (SS)				
Parameter Action & Limit Levels	Suspended Solid (SS) Action Level	Limit Level			
Action & Linit Levels	\geq 12.6 mg/L (120% of C2A)		(130% of C2A)		
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance		
	13.0 mg/L (B3)	11.3 mg/L (C1A) 10.5 mg/L (C2A)	6.0 mg/L (B1) 8.0 mg/L (B2) 12.0 mg/L (B4) 10.8 mg/L (F1A) 9.3 mg/L (H1) 6.3 mg/L (M1) 8.0 mg/L (CR1) 7.8 mg/L (CR2)		
Possible reason for Action or Limit Level Non-compliance			ition works, levelling the slag ying of rockfill and caisson		
	Dominating sea current dire	ection was found to be from	n Southeast to Northwest at		

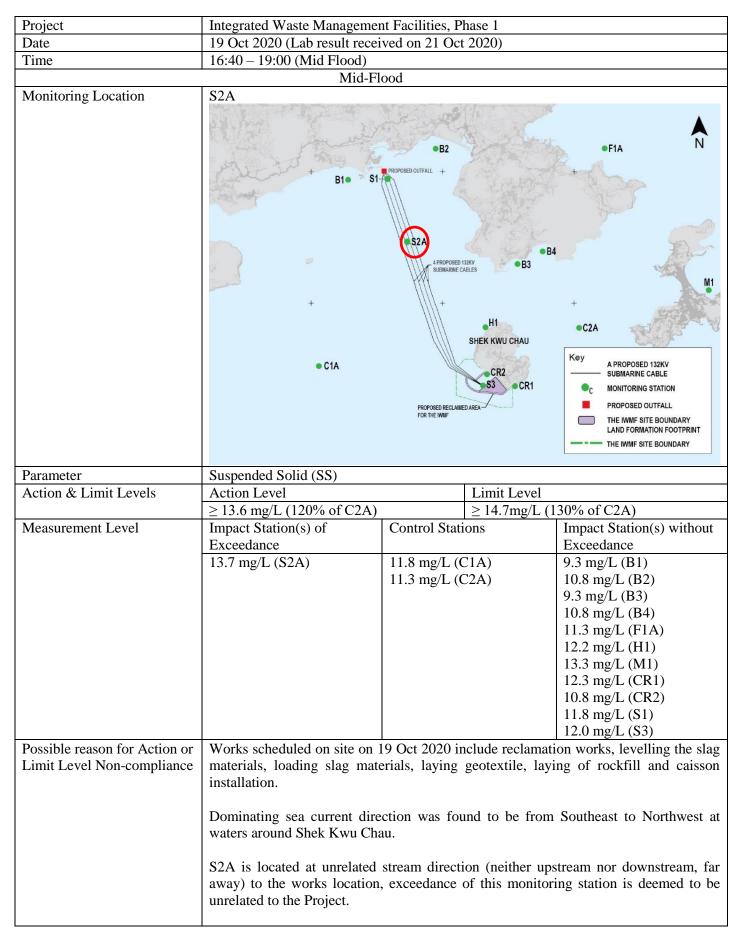

	waters around Shek Kwu Chau.			
	B3 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring station is deemed to be unrelated to the Project.			
	Silt curtain checking by the Contractor was implemented on Marine Access (12 Oct 2020, 08:06am), Eastern Silt Curtain (12 Oct 2020, 08:00am) and GD-851 (12 Oct 2020, 07:00am) and checking results showed that no deficiency of silt curtain was found on that day.			
	From MMO monitoring records on 12 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at western marine access area and the eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and during construction activity.			
	According to the field observation by Marine Mammal Observer team & sampling team during sampling event, no silt plume was observed in the Project site.			
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 06 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-ebb sampling on 12 Oct 2020:			
	Current direction during mid-flood sampling on 12 Oct 2020:			

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

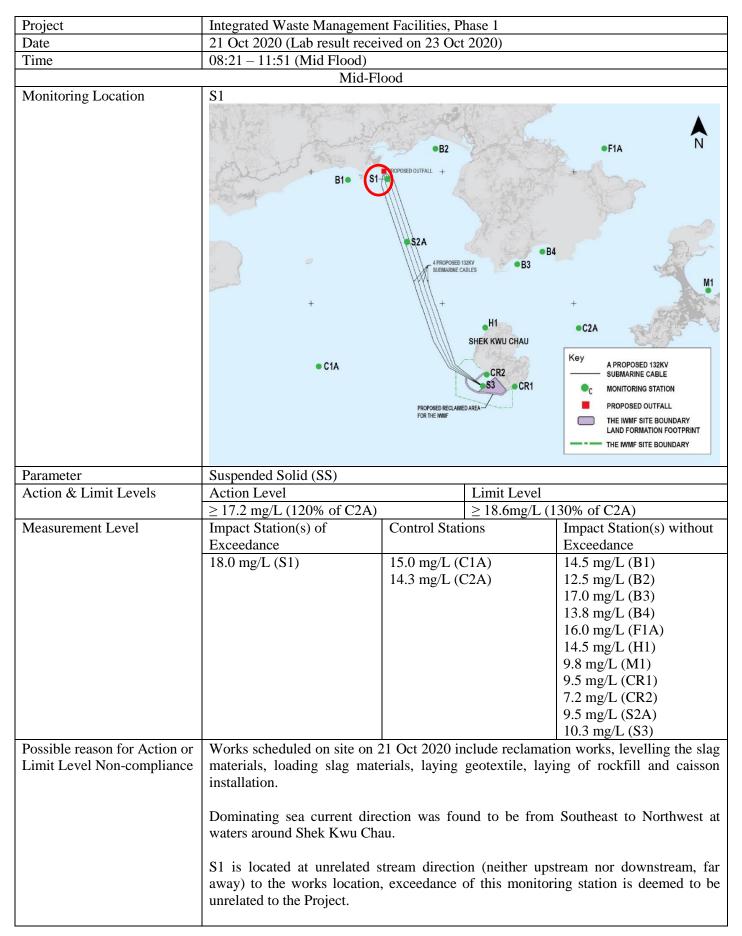
Project	Integrated Waste Managemen	nt Facilities, Phase 1				
Date	14 Oct 2020 (Lab result received on 16 Oct 2020)					
Time	08:27 – 11:57 (Mid-Ebb)					
	15:19 – 18:49 (Mid Flood)					
	Mid-E	Ebb				
Monitoring Location	M1,CR1,CR2					
	+ • C1A	B2 PROPOSED OUTFALL + SZA 4 PROPOSED ISSNY SUBMARINE CABLES 4 H 5 HEK KWU CHAU CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2	•FIA Temporary monitoring location for M1 • • • • • • • • • • • • •			
Development en	Group and a 1 G all 1 (GG)					
Parameter	Suspended Solid (SS)	T · · · T 1				
Action & Limit Levels	Action Level	Limit Level	1200/ 6014			
	\geq 25.4 mg/L (120% of C1A)	\geq 27.5 mg/L (,			
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without			
	Exceedance		Exceedance			
	29.3 mg/L (M1)	21.2mg/L (C1A)	10.3 mg/L (B1)			
	30.5 mg/L (CR1)	18.8 mg/L (C2A)	8.8 mg/L (B2)			
	27.7 mg/L (CR2)		8.8 mg/L (B3)			
			8.3 mg/L (B4)			
			18.5 mg/L (F1A)			
			12.2 mg/L (H1)			
Possible reason for Action or Limit Level Non-compliance	brought by tropical storm NA Dominating sea current dire waters around Shek Kwu Cha Due to strong swell brought sampling point M1 was ter temporary monitoring locati upstream nor downstream, monitoring station is deemed CR1 and CR2 are near the wo	ection was found to be from	Northwest to Southeast at oon (NANGKA), the water orth of Cheung Chau. The ed stream direction neither cation, exceedance of this			

	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 06 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded. Mid-Flood					
Monitoring Location	B2,B3 + B10 S1	PROPOSED OUTFALL +	•FIA N •FIA Temporary monitoring location for M1 •B4 •C2A Key APROPOSED 132KV SUBMARINE CABLE •C MONITORING STATION • PROPOSED OUTFALL • HE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT			
Parameter	Suspended Solid (SS)		THE IWMF SITE BOUNDARY			
Action & Limit Levels	Action Level	Limit Level	(1200) 5 (214)			
Measurement Level	≥ 33.8 mg/L (120% of C2A) Impact Station(s) of Exceedance 40.8 mg/L (B2) 37.8 mg/L (B3)	Control Stations 27.0 mg/L (C1A) 28.2 mg/L (C2A)	(130% of C2A) Impact Station(s) without Exceedance 31.5 mg/L (B1) 32.8 mg/L (B4) 29.5 mg/L (F1A) 30.3 mg/L (H1) 24.7 mg/L (M1) 25.0 mg/L (CR1) 23.7 mg/L (CR2)			
Possible reason for Action or Limit Level Non-compliance	 No construction work was carried out on site on 14 Oct 2020 due to the strong swell brought by tropical storm NANGKA. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. B2 and B3 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring station is deemed to be unrelated to the Project. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 06 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded. 					
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.					


		Le	egend	
	Speed (knot)		Speed (knot)	
	0-0.5	\rightarrow	1.5-2.0	\rightarrow
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow
	1.0-1.5		2.5 and above	\rightarrow
	(Sourced from	http:	//current.hydro	.gov.hk/
Prepared by	Joe Ho			
Date	2 Nov 2020			

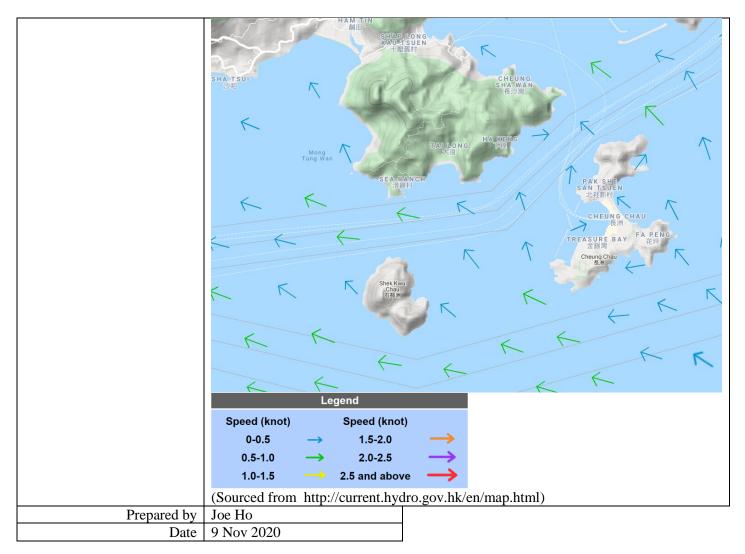

Project	Integrated Waste Managemen	nt Facilities, Phase 1			
Date	16 Oct 2020 (Lab result received on 21 Oct 2020)				
Time	10:05 – 13:35 (Mid-Ebb)				
	15:19 – 18:49 (Mid Flood)				
	Mid-Ebb				
Monitoring Location	M1,CR1,CR2, S2A, S3				
	+ • C1A	B2 PROPOSED DUTFALL 4 PROPOSED 132AV 4 PROPOSED 132AV 4 PROPOSED 132AV 4 PROPOSED 132AV B3 B3 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2	F1A PF1A PF1A PF1A PF1A N N N N N N N N N N N N N		
Denometer	Suspended Solid (SS)				
Parameter Action & Limit Levels	Suspended Solid (SS) Action Level	Limit Level			
Action & Limit Levels			(1200/of C1A)		
Measurement Level	\geq 14.2 mg/L (120% of C1A) Impact Station(s) of	Control Stations $\geq 15.4 \text{ mg/L}$	(130% of C1A) Impact Station(s) without		
Weasurement Lever	Exceedance	Control Stations	Exceedance		
	18.0 mg/L (M1)	11.8 mg/L (C1A)	8.8 mg/L (B1)		
	21.5 mg/L (CR1)	10.3 mg/L (C1A)	9.0 mg/L (B1)		
	19.0 mg/L (CR2)	10.5 mg/L (C211)	8.0 mg/L (B2)		
	19.0 mg/L (CR2) 18.7 mg/L (S2A)		13.0 mg/L (B4)		
	18.7 mg/L (S2A)		13.0 mg/L (B4) 11.2 mg/L (F1A)		
	18.7 mg/L (33)		- · · · · ·		
			8.0 mg/L (H1) 11.0 mg/L (S1)		
Dessible messar for Astion on	Works askeduled on site on	16 Opt 2020 in slude realers			
Possible reason for Action or Limit Level Non-compliance			tion works, levelling the slag ving of rockfill and caisson		
	 Dominating sea current direction was found to be from Northwest to Southeas waters around Shek Kwu Chau. M1 and S2A are located at unrelated stream direction (neither upstream downstream, far away) to the works location, exceedance of this monitoring static deemed to be unrelated to the Project. CR1, CR2 and S3 are located close to the works location within the Project site wh silt curtain checking by the Contractor was implemented on Marine Access (16 Oct 2020, 4:00pm), Eastern Silt Curtain (16 Oct 2020, 4:00pm) and GD-851 (16 Oct 2020). 				

	7:00am) and checking results that day.	showed that r	to deficiency of	silt curtain was found on		
	From MMO monitoring records on 16 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at western marine access area and the eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and during construction activity.					
	•	According to the field observation by Marine Mammal Observer team & sampling team during sampling event, no silt plume was observed in the Project site.				
	Site tidiness in the present bainspection on 06 Oct 2020. N contribute to the increase of t	lo major obser	vation of impro	oper site practices that could		
	Mid-Fl		solids recorded.			
Monitoring Location	B1, B2, B3, B4	000				
	+ B10 S1	PROPOSED OUTFALL + SZA + PROPOSED THE ALL + PROPOSED RECLAINE FOR THE WHIF	H1 SHEK KWU CHAU CR2 S3 CR1	 F1A F1A		
Parameter	Suspended Solid (SS)					
Action & Limit Levels	Action Level		Limit Level			
	\geq 14.2 mg/L (120% of C2A)		\geq 15.4mg/L (1			
Measurement Level	Impact Station(s) of	Control Stati	ons	Impact Station(s) without		
	Exceedance		~	Exceedance		
	17.5 mg/L (B1)	13.3 mg/L (C		10.7 mg/L (F1A)		
	19.3 mg/L (B2)	11.8 mg/L (C	22A)	10.3 mg/L (H1)		
	17.8 mg/L (B3) 15.0 mg/L (B4)			11.8 mg/L (M1) 10.0 mg/L (CR1)		
	15.0 mg/L (D4)			11.0 mg/L (CR2)		
				10.3 mg/L (S1)		
				12.3 mg/L (S2A)		
				11.3 mg/L (S3)		
Possible reason for Action or	Works scheduled on site on 1			0		
Limit Level Non-compliance	materials, loading slag materials, loading slag materials	erials, laying	geotextile, layi	ng of rockfill and caisson		
	Dominating sea current dire	ection was fou	ind to be from	Southeast to Northwest at		


	waters around Shek Kwu Chau.			
	B1, B2, B3 and B4 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring station is deemed to be unrelated to the Project.			
	Silt curtain checking by the Contractor was implemented on Marine Access (16 Oct 2020, 4:00pm), Eastern Silt Curtain (16 Oct 2020, 4:00pm) and GD-851 (16 Oct 2020, 7:00am) and checking results showed that no deficiency of silt curtain was found on that day.			
	From MMO monitoring records on 16 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at western marine access area and the eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and during construction activity.			
	According to the field observation by Marine Mammal Observer team & sampling team during sampling event, no silt plume was observed in the Project site.			
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 06 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the			
	weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-ebb sampling on 16 Oct 2020:			
	Mong Tung Wai			
	$ \begin{array}{c} \rightarrow & \gamma & \gamma \\ \rightarrow & \gamma & \gamma & \gamma \\ \rightarrow & \gamma & \gamma & \gamma \\ \rightarrow & \gamma & \gamma & \gamma \\ \end{array} $			
	メ メ J Shek Kwu Chau 石鼓洲 J J J J J J J J			
	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y			
	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y			
	Current direction during mid flood compling on 16 Oct 2020.			
	Current direction during mid-flood sampling on 16 Oct 2020:			

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

	Silt curtain checking by the Contractor was implemented on Marine Access (19 Oct 2020, 08:00am), Eastern Silt Curtain (19 Oct 2020, 08:00am) and GD-851 (19 Oct 2020, 07:00am) and checking results showed that no deficiency of silt curtain was found on that day.
	From MMO monitoring records on 19 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at marine access area and eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and during construction activity.
	According to the field observation by Marine Mammal Observer team & sampling team during sampling event, no silt plume was observed in the Project site.
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 6 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the
	weekly inspection and the Contractor is reminded to implement all applicable
	mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-flood sampling on 19 Oct 2020:
	t K Mong A Tung Wan t K Kwu Chau 石鼓洲 K K t Kwu
	t t t t t t t t t t t t t t t t t t t
	t t t t t t t t t
	Legend
	Speed (knot) Speed (knot)
	$0-0.5 \rightarrow 1.5-2.0 \rightarrow$
	$0.5-1.0 \rightarrow 2.0-2.5 \rightarrow$
	1.0-1.5 ────────────────────────────────────
	(Sourced from http://current.hydro.gov.hk/en/map.html)
Prepared by	Joe Ho
Date	2 Nov 2020


	 Silt curtain checking by the Contractor was implemented on Marine Access (21 Oct 2020, 12:00nm), Eastern Silt Curtain (21 Oct 2020, 12:00nm) and GD-851 (21 Oct 2020, 07:00am) and checking results showed that no deficiency of silt curtain was found on that day. From MMO monitoring records on 21 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at marine access area and eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. According to the field observation by Marine Mammal Observer team & sampling team during sampling event, no silt plume was observed in the Project site. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 20 Oct 2020. No major observation of improper site practices that could
Actions taken / to be taken	contribute to the increase of the suspended solids recorded.Examination of environmental performance of the Project will be continued during the
Actions taken / to be taken	weekly inspection and the Contractor is reminded to implement all applicable
	mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-flood sampling on 21 Oct 2020:
	$\frac{1}{1000}$
	1.0-1.5 \rightarrow 2.5 and above \rightarrow
D	(Sourced from http://current.hydro.gov.hk/en/map.html)
Prepared by	Joe Ho
Date	2 Nov 2020

Project	Integrated Waste Manageme	ent Facilities, Phase 1	
Date	29 Oct 2020 (Lab result rece	ived on 03 Nov 2020)	
Time	09:22 – 12:52 (Mid-Ebb)		
	14:34 – 18:04 (Mid Flood)		
	Mid-I	Ebb	
Monitoring Location	B1, B2, B3, B4, H1, M1, CR	R1, CR2, S1, S2A, S3	
	+ + + • C1A	B2 CPOSED OUTALL + CS2A + PROPOSED 132V SUBMARINE CABLES + + HERRKWU CHAU CR2 S3 CR1 PROPOSED RECLAIMED AREA FOR THE IMME	•F1A •F1A •F1A •F1A •C2A
Demonstern	George 1, 10, 11, 1 (00)		
Parameter Action & Limit Levels	Suspended Solid (SS) Action Level	Limit Leve	1
Action & Limit Levels			
Magging mant Laval	\geq 8.0 mg/L	$\geq 10.0 \text{ mg/}$	
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance
		5.7 meV(C1A)	
	12.3 mg/L (B1)	5.7 mg/L (C1A)	6.8 mg/L (F1A)
	13.0 mg/L (B2)	5.0 mg/L (C2A)	
	10.5 mg/L (B3)		
	10.8 mg/L (B4)		
	10.0 mg/L (H1)		
	13.7 mg/L (M1)		
	19.0 mg/L (CR1)		
	16.5 mg/L (CR2)		
	11.8 mg/L (S1)		
	17.0 mg/L (S2A)		
	18.3 mg/L (S3)		
Possible reason for Action or	Works scheduled on site on	29 Oct 2020 include reclan	nation works, levelling the slag
Limit Level Non-compliance	materials, loading slag materials, laying geotextile, laying of rockfill and caisson installation.		
	Dominating sea current dire waters around Shek Kwu Ch		om Northwest to Southeast at
		far away) to the works	related stream direction (neither location, exceedance of this ect.

	 silt curtain checking by the O 2020, 01:40pm), Eastern Silt showed that no deficiency of From MMO monitoring reco crane barge (GD-851), silt curtain on that day while no commencement of and during According to the field observe team during sampling event, Site tidiness in the present b inspection on 27 Oct 2020. N contribute to the increase of the second second	Contractor was implemented Curtain (29 Oct 2020, 01:4 silt curtain was found on the ords on 29 Oct 2020, MMO artain at western marine acc deficiency of silt curtain was g construction activity. vation by Marine Mammal (no silt plume was observed earges in the Project site we No major observation of im the suspended solids record	Opm) and checking results hat day. team was arranged for one tess area and the eastern silt as found before the Observer team & sampling in the Project site. ere checked during weekly site proper site practices that could
	Mid-F	lood	
Monitoring Location	B1, B2, B3		
	+ + • C1A	CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2	F1A P1A P1A P1A P1A P1A P1A P1A P
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level	Limit Leve	1
	\geq 14.0 mg/L (120% of C2A)	≥ 15.2mg/I	L (130% of C2A)
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without
	Exceedance		Exceedance
	14.5 mg/L (B1)	11.3 mg/L (C1A)	11.0 mg/L (B4)
	15.3 mg/L (B2)	11.7 mg/L (C2A)	11.0 mg/L (F1A)
	16.3 mg/L (B3)		11.5 mg/L (H1)
			13.0 mg/L (M1)
			12.2 mg/L (CR1)
			13.0 mg/L (CR2)
			13.0 mg/L (CR2) 11.8 mg/L (S1)
			13.0 mg/L (CR2)

Limit Level Non-compliance	materials, loading slag materials, laying geotextile, laying of rockfill and caisson installation.
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.
	B1, B2 and B3 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring station is deemed to be unrelated to the Project.
	Silt curtain checking by the Contractor was implemented on Marine Access (29 Oct 2020, 01:40pm), Eastern Silt Curtain (29 Oct 2020, 01:40pm) and checking results showed that no deficiency of silt curtain was found on that day.
	From MMO monitoring records on 29 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at western marine access area and the eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and during construction activity.
	According to the field observation by Marine Mammal Observer team & sampling team during sampling event, no silt plume was observed in the Project site.
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 27 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the
	weekly inspection, and the Contractor is reminded to implement all applicable
	mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-ebb sampling on 29 Oct 2020:
	Mong Tung Wan SEA RANCH 混程村
	→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	-> > > > > > > > > > > > > > > > > > >
	x t t t t t
	Current direction during mid-flood sampling on 29 Oct 2020:

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

during construction activity. According to the field observation by Marine Mammal Observer team & sampling team during sampling event, no silt plume was observed in the Project site. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 27 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded. Actions taken / to be taken Examination of environmental performance of the Project will be continued during the weekly inspection and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&AA Manual. Remarks Current direction during mid-ebb sampling on 31 Oct 2020: Image: the project site precision during the weekly inspection and the contractor is reminded to implement all applicable mitigation measures as per the Updated EM&AA Manual. Remarks Current direction during mid-ebb sampling on 31 Oct 2020: Image: the project site per object site per		 2020, 11:00am), Eastern Silt Curtain (31 Oct 2020, 11:00am) and GD-851 (31 Oct 2020, 07:00am) and checking results showed that no deficiency of silt curtain was found on that day. From MMO monitoring records on 31 Oct 2020, MMO team was arranged for one crane barge (GD-851), silt curtain at marine access area and eastern silt curtain on that day while no deficiency of silt curtain was found before the commencement of and
inspection on 27 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded. Actions taken / to be taken Examination of environmental performance of the Project will be continued during the weekly inspection and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. Remarks Current direction during mid-ebb sampling on 31 Oct 2020:		According to the field observation by Marine Mammal Observer team & sampling
weekly inspection and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. Remarks Current direction during mid-ebb sampling on 31 Oct 2020: Image: Contract of the contrecont of the contract of the contract of the	Actions taken (to be taken	inspection on 27 Oct 2020. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.
Remarks Current direction during mid-ebb sampling on 31 Oct 2020: Image: State of the state o	Actions taken / to be taken	weekly inspection and the Contractor is reminded to implement all applicable
Speed (knot)Speed (knot) $0-0.5$ \rightarrow $1.5-2.0$ $0.5-1.0$ \rightarrow $2.0-2.5$ $1.0-1.5$ \rightarrow 2.5 and above(Sourced from http://current.hydro.gov.hk/en/map.html)Prepared byJoe Ho	Remarks	A TSUI A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Speed (knot) Speed (knot)
Prepared by Joe Ho		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	^ · ·	Joe Ho