

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.16

Monthly EM&A Report No.16 (Period from 1 October to 31 October 2019)

(Clause 3.3, Further Environmental Permit FEP-01/429/2012/A)

Document No.

KSZHJV	/	312	/	Monthly EM&A	/	0001	/	В
Issuer		Project Code		Type of Document		Sequential No.		Revision
								Index

	Prepared by:	Certified by:	Verified by:	
Name	Polar Chan	Jacky Leung	Mandy To	
Position	Environmental Team	Environmental Team Leader	Independent Environmental Checker	
Signature	62.		Mandys	
Date:	15 Jan 2020	15 Jan 2020	20 January 2020	

[©] This document contains confidential and proprietary information belonging to Keppel Seghers - Zhen Hua Joint Venture and/or its affiliates. The contents of this document shall not be used for any other purpose than that for which they were provided. Any disclosure, copying, distribution or the taking of any action in reliance on the contents of this document is strictly prohibited. This document confers upon the recipient no right or license of whatsoever nature based on the information as described herein. If you have received this document in error, please immediately arrange for the return to Keppel Seghers - Zhen Hua Joint Venture or destruction of this document.

Revision History

В	Revision based on EPD's comment	09 December 2019
A	First Submission	14 November 2019
Rev.	DESCRIPTION OF MODIFICATION	DATE

CONTENTS

1.	Basic Project I	nformation	8
2.	Marine Water	Quality Monitoring	17
3.	Noise Monitor	ing	29
4.	Waste		36
5.	Coral		38
6.	Marine Mamm	al	44
7.	White-Bellied	Sea Eagle	57
8.	Summary of M	Ionitoring Exceedance, Complaints, Notification of Summons	
9.	EM&A Site In	spection	68
10.	0. Future Key Issues		70
11.	Conclusion and	d Recommendations	72
App	endix A	Master Programme	

Appendix A	Master Programme	
Appendix B	Summary of Implementation Status of Environmental Mitigation	
Appendix C	Impact Monitoring Schedule of the Reporting Month	
Appendix D	Water Quality Monitoring Data	
Appendix E	HOKLAS Laboratory Certificate	
Appendix F	Water Quality Equipment Calibration Certificate	
Appendix G	Event/ Action Plan for Water Quality Exceedance	
Appendix H	Noise Monitoring Equipment Calibration Certificate	
Appendix I	Event/Action Plan for Noise Exceedance	
Appendix J	Noise Monitoring Data	
Appendix K	Waste Flow Table	
Appendix L	Event/Action Plan for Coral Monitoring	
Appendix M	Event/Action Plan for White-bellied Sea Eagle Monitoring	
Appendix N	Exceedance Report	
Appendix O	Complaint Log	
Appendix P	Impact Monitoring Schedule of Next Reporting Month	

EXECUTIVE SUMMARY

Introduction

- A1. The Project, Integrated Waste Management Facility (IWMF), is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO) and is currently governed by a Further Environmental Permit (FEP No. FEP-01/429/2012/A) for the construction and operation of the Project.
- A2. In accordance with the Updated Environmental Monitoring and Audit (EM&A) Manual for the Project, EM&A works for marine water quality, noise, waste management and ecology should be carried out by Environmental Team (ET), Acuity Sustainability Consulting Limited (ASCL), during the construction phase of the Project.
- A3. This is the 16th Monthly EM&A Report, prepared by ASCL, for the Project summarizing the monitoring results and audit findings of the EM&A programme at and around Shek Kwu Chau (SKC) during the reporting period from 1 October 2019 to 31 October 2019 and exceedance investigation findings for 25 & 27 September 2019.

Summary of Main Works Undertaken & Key Mitigation Measures Implemented

- A4. Key activities carried out in this reporting period for the Project included the following:
 - DCM Installation Works
 - Coring of DCM clusters
 - Cone Penetration Test
 - Sand Blanket Laying
 - Installation of Caisson
 - Dredging and sediment disposal
- A5. The major environmental impacts brought by the above construction activities include:
 - Water quality impact from DCM installation
 - Disturbance and possible trapping of Finless Porpoise by silt curtains
- A6. The key environmental mitigation measures implemented for the Project in this reporting period associated with the construction activities include:
 - Reduction of noise from equipment and machinery on-site;
 - Installation of silt curtains for DCM installation;
 - Sorting, recycling, storage and disposal of general refuse and construction waste;
 - Management of chemicals and avoidance of oil spillage on-site; and
 - Implementation of cluster MMEZ (Marine Mammal Exclusion Zone) and inspection of enclosed environment within silt curtains as per DMPFP (Detailed Monitoring Programme of Finless Porpoise)
 - Daily site audit and monitoring by ET during dredging work as stipulated in FEP Clause 2.21A

- Regulation on rate and means for dredging works as stipulated in FEP Clause 2.17
 2.21 or the approved Supporting Document for Reviewing Dredging Rate and Filling Rate, whichever is applicable
- Storage, handling and disposal of dredged materials according to Dumping At Sea
 Ordinance (DASO)
- Confirmation of the absence of silt content in the rock filling material and the filling work is adequately conducted
- Installation process of floating silt curtain according to approved Silt Curtain Deployment Plan

Summary of Exceedance & Investigation & Follow-up

- A7. The EM&A works for construction noise, water quality, construction waste, marine mammal and White-Bellied Sea Eagle (WBSE) were conducted during the reporting period in accordance with the Updated EM&A Manual.
- A8. No exceedance of the Action or Limit Levels in relation to the construction noise, construction waste and WBSE monitoring was recorded in the reporting month.
- A9. Thirty-four (34) of the General & Regular DCM water quality monitoring results of suspended solids (SS) obtained during the reporting period had exceeded Action Level. Thirty-five (35) of SS monitoring results had exceeded the relevant Limit Level during the reporting period. Three hundred & five (305) of the General & Regular DCM water quality monitoring results of dissolved oxygen (DO) obtained during the reporting period had exceeded Action Level. None (0) of DO monitoring results had exceeded the relevant Limit Level during the reporting period. Two (2) of the General & Regular DCM water quality monitoring results of turbidity obtained during the reporting period had exceeded Action Level. None (0) of turbidity monitoring results had exceeded the relevant Limit Level during the reporting period. Investigation was immediately carried out accordingly. The exceedance was found to be unrelated to the Project, except for the SS exceedance on 2 October 2019, where the relevant site records are under review and the corresponding incident report would be marked as interim incident report. The complete incident report on 2 October 2019 will be presented in the next monthly report.
- A10. No project-related Action Level & Limit Level exceedance was recorded from 25 September to 1 October 2019 and 3 October to 31 October 2019.
- A11. Weekly site inspections of the construction works by ET were carried out on 2, 8, 15, 23 & 29 October 2019 to audit the mitigation measures implementation status. Monthly joint site inspection was carried out on 15 October 2019 by ET and IEC. Observations were recorded in the site inspection checklists and provided to the contractors together with the appropriate follow-up actions where necessary.

Complaint Handling and Prosecution

- A12. No project-related environmental complaint was received during the reporting period.
- A13. Neither notifications of summons nor prosecution was received for the Project.

Reporting Change

A14. There was no change to be reported that may affect the on-going EM&A programme.

Summary of Upcoming Key Issues and Key Mitigation Measures

- A15. Key activities anticipated in the next reporting period for the Project will include the following:
 - DCM Installation Works;
 - Coring of DCM samples;
 - Cone Penetration Test;
 - Dredging Works and Sediment Disposal;
 - Rock Filling of Foundation;
 - Leveling Works for the Foundation of Seawall and Berth Area;
 - Caisson Laying;
 - Rubble Mound Laying;
 - Sand Blanket and Geotextile Laying.
- A16. The major environmental impacts brought by the above construction activities will include:
 - Water quality impact from the DCM installation, laying of sand blanket and dredging operation;
 - Disturbance and possible trapping of Finless Porpoise by silt curtains.
- A17. The key environmental mitigation measures for the Project in the coming reporting period associated with the construction activities will include:
 - Reduction of noise from equipment and machinery on-site;
 - Installation of silt curtains for DCM installation, sand blanket laying works and dredging works;
 - Sorting, recycling, storage and disposal of general refuse and construction waste;
 - Management of chemicals and avoidance of oil spillage on-site, especially under heavy rains and adverse weather; and
 - Implementation of cluster MMEZ and inspection of enclosed environment within silt curtains as per DMPFP;
 - Regulation on rate and means for dredging works as stipulated in FEP Clause 2.17
 2.21 or the approved Supporting Document for Reviewing Dredging Rate and Filling Rate, whichever is applicable;
 - Daily site audit and monitoring by ET during dredging work as stipulated in FEP Clause 2.21A;

- Storage, handling and disposal of dredged materials according to Dumping At Sea Ordinance (DASO);
- Confirmation of the absence of silt content in the rock filling material and the filling work is adequately conducted.
- Installation process of floating silt curtain according to approved Silt Curtain Deployment Plan

1. BASIC PROJECT INFORMATION

1.1 Background

- 1.1.1 The Government of Hong Kong SAR will develop the Integrated Waste Management Facilities (IWMF) Phase 1 (hereafter "the Project") with incineration to achieve substantial bulk reduction of unavoidable municipal solid waste (MSW) and to recover energy from the incineration process. The IWMF will be on an artificial island to be formed by reclamation at the south-western coast of Shek Kwu Chau. Keppel Seghers Zhen Hua Joint Venture (KSZHJV) was awarded the contract under Contract No. EP/SP/66/12 Integrated Waste Management Facilities Phase 1 to construct and operate the Project.
- 1.1.2 An environmental impact assessment (EIA) study for the Project has been conducted and the EIA Report was approved under the Environmental Impact Assessment Ordinance on 17 January 2012. An Environmental Permit (EP) (EP No.: EP-429/2012) was granted to EPD on 19 January 2012 for the construction and operation of the Project. Subsequently, the EP was amended (EP No.: EP-429/2012/A) and a further EP (FEP) (EP No.: FEP-01/429/2012/A) was granted to the Keppel Seghers Zhen Hua Joint Venture (KSZHJV) on 27 December 2017.
- 1.1.3 The key design and construction elements of the Project include the Design and the Works including but not limited to the design, engineering procurement, construction, testing and commissioning of the Facility including:
 - Ground Treatment works;
 - Seawall and Breakwater construction;
 - Non-dredged Reclamation;
 - Other Marine works and Harbour and Port Facilities;
 - Site formation;
 - Municipal Solid Waste (MSW) Treatment Processes;
 - Energy Recovery for Power Generation and Surplus Electricity export;
 - Wastewater treatment process;
 - Desalination and water treatment process;
 - Civil works;
 - Building and Structural works;
 - Electrical and Mechanical works;
 - Building Services;
 - Architectural and Landscaping works; and
 - All other design and works required for the operation and maintenance of the Facility according to the Contract requirements.
- 1.1.4 The location of the IWMF near Shek Kwu Chau (SKC) and general layout of IWMF are shown in **Figure 1.1** and **Figure 1.2** respectively.

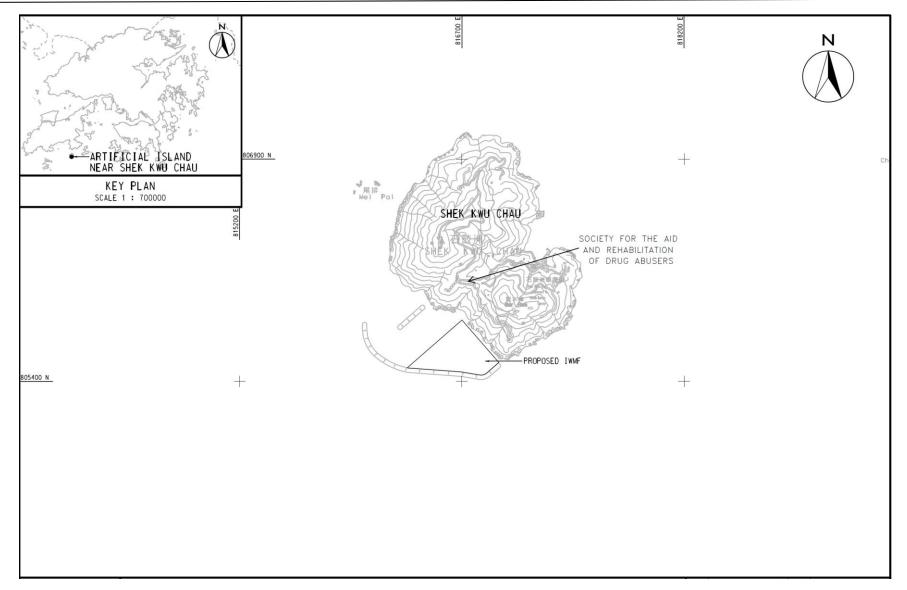


Figure 1.1 Location of the IWMF at the Artificial Island near SKC

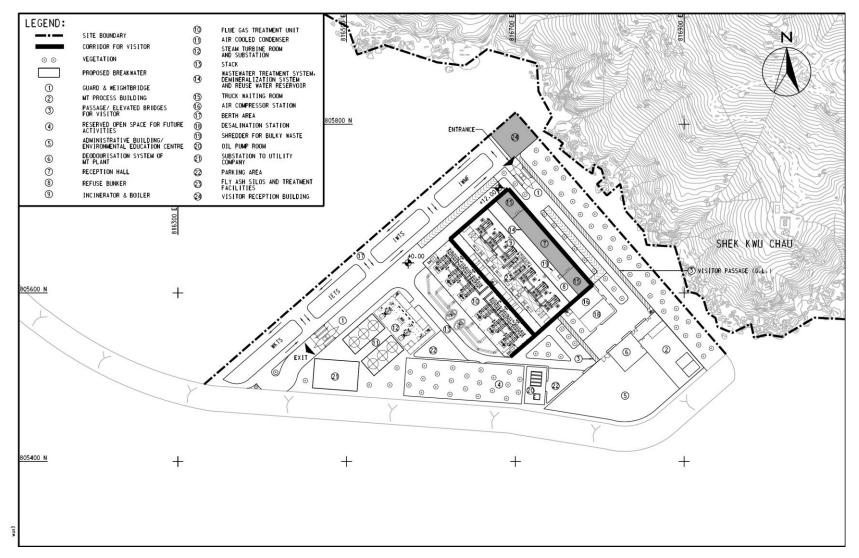
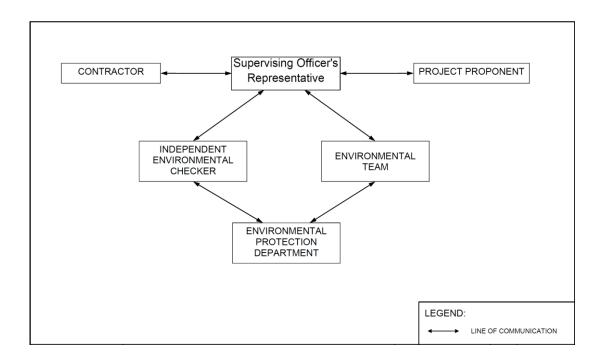



Figure 1.2 General Layout of the IWMF at the Artificial Island near SKC

1.2 The Reporting Scope

- 1.2.1 This is the 16th Monthly EM&A Report for the Project which summarizes the key findings of the EM&A programme during the reporting period from 1 October to 31 October 2019, and exceedance of investigation findings for 25 and 27 September 2019.
- 1.3 Project Organization
- 1.3.1 The Project Organization structure for Construction Phase is presented in **Figure 1.3**.

Figure 1.3 Project Organization Chart

1.3.2 Contact details of the key personnel are presented in **Table 1.1** below:

Table 1.1 Contact Details of Key Personnel

Party	Position	Name	Telephone no.
Keppel Seghers – Zhen Hua Joint Venture	Project Manager	Kenny Yu	2192-0606
Acuity Sustainability Consulting Limited	Environmental Team Leader	Robin Ho	2698-6833
ERM-Hong Kong, Limited	Independent Environmental Checker	Mandy To	2271-3000

1.4 Summary of Construction Works

1.4.1 Details of the major construction activities undertaken in this reporting period are shown in **Table 1.2** and **Figure 1.4** below. The construction programme is presented in **Appendix A**.

Table 1.2 Summary of the Construction Activities Undertaken during the Reporting Month

Location of works	Construction activities undertaken	Remarks on progress
Breakwater	Sand blanket laying	On-going
	DCM installation	On-going
Seawall portion	DCM installation	6318 out of 6491 DCM injections were completed
	Coring for DCM cluster	On-going
	• Dredging	• 36,791.8842 m³ of dredged sediment in bulk quantity was dumped at relevant dumping site in total up to 31 October 2019.
	Cone penetration test	On-going
	Installation of caisson	On-going

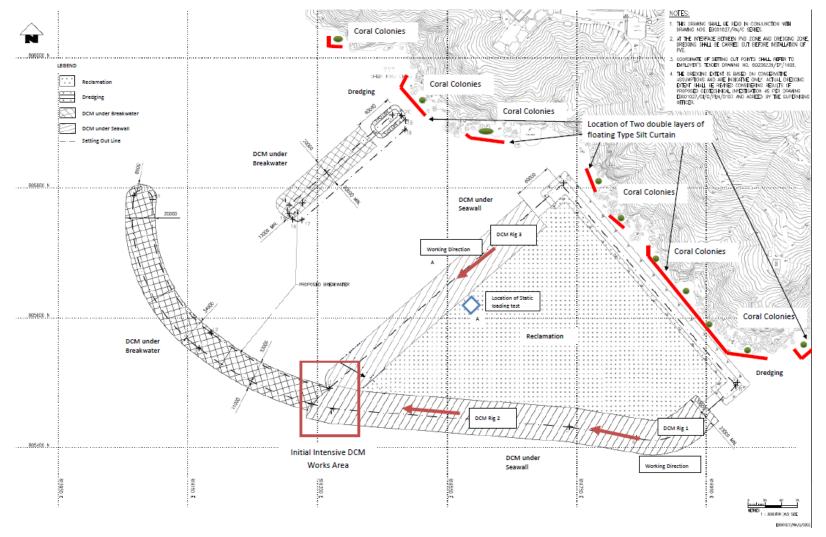


Figure 1.4 Location of Major Construction Activities Undertaken during the Reporting Month

1.5 Summary of Environmental Status

1.5.1 A summary of the valid permits, licences, and /or notifications on environmental protection for this Project is presented in **Table 1.3**

Table 1.3 Summary of the Status of Valid Environmental Licence, Notification, Permit and Documentations

Permit/ Licences/ Notification	Reference	Validity Period	Remarks
Variation of	EP-429/2012/A	Throughout the	
Environmental Permit		Contract	
Further	FEP-01/429/2012/A	Throughout the	
Environmental Permit		Contract	
Notification of	Ref No.: 428778	15/12/2017 –	
Construction Works		22/09/2024	
under the Air			
Pollution Control			
(Construction Dust)			
Regulation (Form			
NA)			
Wastewater Discharge	WT00033787-2019	22/08/2019 –	
Licence		31/08/2024	
Chemical Waste	WPN0017-933-K3301-01	Throughout the	
Producer Registration		Contract	
	WPN5213-961-K3301-02	Throughout the	
		Contract	
Construction Noise	GW-RS0815-19	16/09/2019 –	
Permit (24 hours)		12/03/2020	
	GW-RS0938-19	29/10/2019 –	
		27/04/2020	
Billing Account for	A/C No.:7029768	Throughout the	
Disposal of		Contract	
Construction Waste	777.77.70.071	20/00/2010	
Marine Dumping	EP/MD/20-051	20/08/2019 –	
Permit		19/02/2020	

1.5.2 The status for all environmental aspects is presented in **Table 1.4**.

Table 1.4 Summary of Status for Key Environmental Aspects under the Updated EM&A Manual

Parameters	Status		
Water Quality			
Baseline Monitoring under	The baseline water quality monitoring result has been reported		
Updated EM&A Manual	in Baseline Monitoring Report and submitted to EPD under FEP		
and Detailed Plan on DCM	Condition 3.4		
Impact Monitoring	On-going		
Regular DCM Monitoring	On-going		
Initial Intensive DCM	Conducted from 11 February 2019 to 10 March 2019, to be		
Monitoring	resumed whenever DCM related parameter exceeded the AL/LL		
Baseline Water Quality of	Completed over 13 August 2018 to 7 September 2018		

Parameters	Status
wet season	
Noise	
Baseline Monitoring	The baseline noise monitoring result has been reported in Baseline Monitoring Report and submitted to EPD under FEP Condition 3.4
Impact Monitoring	On-going
Waste Management	
Mitigation Measures in Waste Monitoring Plan	On-going
Coral	
Pre-translocation Survey and Coral Mapping	The Coral Translocation Plan was submitted and approved by EPD under EP Condition 2.12
Coral Translocation	Completed on 28 March 2018
Post-Translocation Coral Monitoring	Survey affected by missing of translocated and tagged coral colonies after typhoons in September 2018, completed on 28 March 2019.
Pre-construction Coral Survey and Tagging	Completed on 26 June 2018
Tagged Coral Monitoring	Survey obstructed due to missing of tagged coral colonies after typhoons in September 2018
Coral Survey and Re-tagging	Re-tagging at Indirect Impact Site was conducted on 23 November and Re-tagging at Control Site was conducted on 3 December 2018.
Post Re-tagging Coral Monitoring	On-going
Marine Mammal	
Vessel-based Line-transect Survey Baseline Monitoring	The baseline marine mammal monitoring result has been reported in Baseline Monitoring Report and submitted to EPD under FEP Condition 3.4
Vessel-based Line-transect Survey Impact Monitoring	On-going
Land-based Theodolite Tracking	30 days of theodolite surveys were started at 21 Feb 2019 and completed in May 2019.
Passive Acoustic Monitoring	30 days of PAM surveys were started at 1 May 2019 and completed until the end of May 2019.
White-bellied Sea Eagle	
Baseline Monitoring	The baseline WBSE monitoring result has been reported in Baseline Monitoring Report and submitted to EPD under FEP Condition 3.4
Impact Monitoring	On-going
Environmental Audit	
Site Inspection covering Measures of Air Quality, Noise Impact, Water Quality, Waste, Ecological Quality, Fisheries, Landscape and Visual	On-going
Mitigation Measures in Marine Mammal Watching Plan (MMWP)	On-going
Mitigation Measures in Detailed Monitoring	On-going

Parameters	Status
Programme on Finless	
Porpoise (DMPFP)	
Mitigation Measures in	On-going
Vessel Travel Details	
Daily Site Audit and	On-going
Monitoring for Dredging	
Work	

- 1.5.3 Other than the EM&A work by ET, environmental briefings, trainings and regular environmental management meetings were conducted, in order to enhance environmental awareness and closely monitor the environmental performance of the contractors.
- 1.5.4 The EM&A programme has been implemented in accordance with the recommendations presented in the approved EIA Report and the Updated EM&A Manual. A summary of implementation status of the environmental mitigation measures for the construction phase of the Project during the reporting period is provided in **Appendix B**.

2. MARINE WATER QUALITY MONITORING

- 2.1 Water Quality Requirements
- 2.1.1 To ensure no adverse water quality impact, water quality monitoring is recommended to be carried out at the nearby water sensitive receivers (WSRs) during construction phase including proposed reclamation, breakwater construction, etc.
- 2.1.2 In accordance with the Updated EM&A Manual, impact water quality monitoring were conducted 3 days per week at mid-flood and mid-ebb tide to obtain impact water quality levels at the eleven monitoring stations during general water quality monitoring and fourteen monitoring stations during regular DCM monitoring for the construction period.
- 2.2 Water Quality Parameters, Time, Frequency
- 2.2.1 Dissolved Oxygen (DO), Turbidity, Suspended Solids (SS), Salinity and pH have been undertaken at the eleven monitoring stations during general water quality monitoring. Besides the above parameters, monitoring for Total Alkalinity, Current Velocity and Current Direction have been undertaken at all fourteen monitoring stations (including S1, S2A and S3) during regular DCM monitoring. While the same parameters monitored during regular DCM monitoring would be undertaken at twelve immediate upstream and downstream area to the DCM works location during intensive DCM monitoring. Intensive DCM monitoring was not undertaken during the reporting period.
- 2.2.2 Current velocity and direction, DO, temperature, salinity, turbidity and pH have been measured in-situ and the SS, Total Alkalinity have been assayed in a HOKLAS laboratory.
- 2.2.3 In associate with the water quality parameters, other relevant data were also measured, such as monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or work underway nearby were also recorded. The monitoring schedule is provided in **Appendix C**.
- 2.2.4 Impact water quality monitoring was conducted 3 days per week in the reporting period. All parameters were monitored during mid-flood and mid-ebb tides at three water depths for general water quality monitoring. The interval between two sets of monitoring has not been less than 36 hours.
- 2.2.5 **Table 2.1** summarizes the monitoring parameters, frequency and duration of the impact water quality monitoring during construction phase.

Table 2.1 Water Quality Monitoring Parameters, Frequency and Duration

Parameter, unit	Frequency	No. of Depths
 Water Depth (m) Temperature (°C) Salinity (ppt) pH (pH unit) Dissolved Oxygen (DO)(mg/L and % of saturation) Turbidity (NTU) Suspended Solids (SS), 	General water quality monitoring and Regular DCM monitoring: 3 days per week, at mid-flood and mid-ebb tides	3 water depths: 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

Parameter, unit	Frequency	No. of Depths
mg/L		
• Total alkalinity (mg/L)		
• Current velocity (m/s)		
• Direction		

2.3 Water Quality Monitoring Locations

2.3.1 Impact water quality monitoring was conducted at eleven monitoring locations (B1-B4, H1, C1, C2, F1, CR1, CR2 & M1) during general water quality monitoring and was conducted at fourteen water monitoring locations (B1-B4, H1, C1, C2, F1, S1-S3, CR1, CR2 & M1) during regular DCM monitoring, as shown in **Figure 2.1**. As per the relocation proposal verified by IEC and approved by EPD, the monitoring location C1, C2, S2, F1 are relocated at C1A, C2A, S2A, F1A as equivalent points respectively to clear up the concerns from stakeholders.

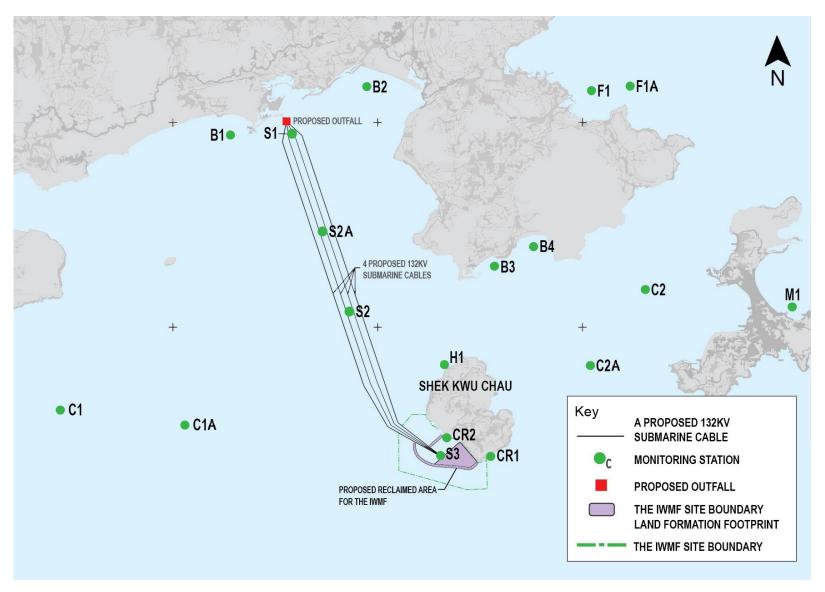


Figure 2.1 Water monitoring locations at Artificial Island near SKC

- 2.3.2 B1 to B4 are located at 4 beaches respectively at the southern shore of Lantau Island. Monitoring station H1 is located at the horseshoe crab habitat at northern SKC, while CR1 and CR2 are located at the coral communities at southwestern shore of SKC. Monitoring station F1 is located at the Cheung Sha Wan Fish Culture Zone while monitoring station M1 is located at Tung Wan at Cheung Chau. Monitoring station F1A is relocated for F1 at the Cheung Sha Wan Fish Culture Zone. S1, S2 and S3 are located at the northern landing site, midway and southern landing site of the proposed submarine cable, respectively. S2A is the relocated monitoring station of S2 which represents the midway landing site of the proposed submarine cable. S1, S2/S2A and S3 are required for monitoring due to the laying of submarine cable. Control stations C1 and C2 at far field locations are for comparison. Control stations C1A and C2A are relocated for C1 and C2 respectively as equivalent far field locations for comparison.
- 2.3.3 Fourteen monitoring stations are listed in **Table 2.2**:

Table 2.2 - Locations of Marine Water Quality Stations

Monitoring station	Description	Easting	Northing
B1	Beach - Cheung Sha Lower	813342	810316
B2	Beach - Pui O	815340	811025
В3	Beach - Yi Long Wan	817210	808395
B4	Beach - Tai Long Wan	817784	808682
H1	Horseshoe Crab - Shek Kwu Chau	816477	806953
C1	Control Station (note i)	810850	806288
C1A	Relocated Control Station	812823	806300
C2	Control Station (note ii)	819421	808053
C2A	Relocated Control Station	818869	806808
F1	Cheung Sha Wan Fish Culture Zone (note iii)	818631	810966
F1A	Cheung Sha Wan Fish Culture Zone	819109	810924
S1	Submarine Cable Landing Site	814245	810335
S2	Submarine Cable (note iv)	815076	807747
S2A	Submarine Cable	814808	808515
S3	Submarine Cable Landing Site	816420	805621
CR1	Coral	817144	805597
CR2	Coral	816512	805882
M1	Tung Wan	821572	807799

Note:

- i. Relocated to C1A in Mar 2019
- ii. Relocated to C2A in Mar 2019
- iii. Relocated to S2A in Mar 2019
- iv. Relocated to F1A in Mar 2019
- 2.4 Impact Monitoring Methodology

- 2.4.1 General and regular DCM water quality monitoring was conducted three days per week, at mid-flood and mid-ebb tides, at the designated water quality monitoring stations during the reporting period.
- 2.4.2 The interval between 2 sets of monitoring was not less than 36 hours. Sampling was collected at three water depths, namely, 1m below water surface, mid-depth and 1m above seabed, except where the water depth is less than 6m, the mid-depth was omitted. If the water depth was less than 3m, only the mid-depth station was monitored.
- 2.4.3 All observations and results were recorded in the data record sheets in **Appendix D**. Duplicate in-situ measurements and water sampling were carried out in each sampling event. The monitoring probes were retrieved out of water after the first measurement and then redeployed for the second measurement. When the difference in value between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading would be discarded and further readings would be taken.

In-situ Measurement

2.4.4 Levels of DO, pH, temperature, turbidity and salinity would be measured in-situ by portable and weatherproof measuring instrument, e.g. YSI ProDSS and Horiba U-53 Multiparameter complete with cable and sensor. http://www.ysi.com/ProDSS for YSI ProDSS technical specification and http://www.horiba.com/process-environmental/products/water-treatment-environment /details/u-50-multiparameter-water-quality-checker-368/ for Horiba U-53 technical specification). Water current velocity and Water Current direction would be measured by portable and weatherproof current meter, e.g. SonTek Hydrosurveyor (Refer to https://www.sontek.com/media/pdfs/riversurveyor-s5-m9-brochure.pdf for SonTek Hydrosurveyor M9 technical specification). Parameters measured by in-situ measurement is tabulated in Table 2.3

Table 2.3 - Parameters Measured by In-situ Measurement

Parameter	Resolution	Range
Temperature	0.1 °C	-5-70 °C
Dissolved Oxygen (DO)	0.01 mg/L	0-50.0 mg/L
Turbidity	0.1 NTU	0-1000 NTU
pН	pH 0.01	pH 0-14
Salinity	0.01 ppt	0-40 ppt
Water Current Velocity	0.001m/s	±20m/s
Water Current Direction	±1°	±2°

Laboratory Analysis

2.4.5 Analysis of Total Alkalinity and SS shall be carried out in a HOKLAS accredited laboratory, as shown in **Appendix E**. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory determinations. The determination work shall be started within 24 hours after collection of the water samples. Analytical methods and detection limits for SS and total alkalinity are presented in **Table 2.4**.

Table 2.4 - Analytical Methods Applied to Water Quality Samples

Parameter	Analytical method	Detection Level
Suspended Solids, SS	APHA 2540 D _i	1 mg/L
Total Alkalinity	APHA 2320	0.01 mg/L

Footnote:

 "APHA 2540 D" stands for American Public Health Association Standard Methods for the Examination of Water and Wastewater. 23rd Edition

Field Log

2.4.6 Other relevant data was recorded, such as: monitoring location / position, time, water depth, weather conditions and any special phenomena underway near the monitoring station.

2.5 Monitoring Equipment

2.5.1 Equipment used in the impact water quality monitoring programme is summarized in **Table 2.5** below. Calibration certificates for the water quality monitoring equipment are attached in **Appendix F**.

Table 2.5 Impact Water Quality Monitoring Equipment

Monitored Parameter	Equipment	Brand and Model
DO, Temperature, Salinity,	Multi-functional Meter	YSI ProDSS
pH and Turbidity		Horiba U-53
Coordinates	Positioning Equipment	Garmin GPSMAP 78s
Water depth	Water Depth Detector	Hummingbird 160 Portable
SS	Water Sampler	Wildco 2 L Water Sampler
		with messenger

2.5.2 Dissolved Oxygen and Temperature Measuring Equipment

The instrument is a portable and weatherproof DO probe mounted on the multi-functional meter complete with cable and sensor and is powered by a DC supply source. The equipment was capable of measuring:

- A DO level in the range of 0 50 mg/L; and
- Temperature of -5 70 degree Celsius.

2.5.3 Turbidity Measurement Instrument

The instrument is a portable and weatherproof turbidity-measuring probe mounted on the multi-functional meter and is powered by a DC supply source. The instrument is equipped with a photoelectric sensor which is capable of measuring turbidity between 0 - 1000 NTU.

2.5.4 pH Measurement Instrument

The probe consists of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device mounted on the multi-functional meter. It is

readable to 0.1 pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

2.5.5 Salinity Measurement Instrument

A portable salinometer mounted on the multi-functional meter capable of measuring salinity in the range of 0-40 parts per thousand (ppt) was provided for measuring salinity of the water at each monitoring location.

2.5.6 Sampler

The water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

2.5.7 Sample Containers and Storage

Water samples for SS were stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen) and delivered to the laboratory and analysed as soon as possible after collection. Sufficient volume of samples was collected to achieve the detection limit stated in **Table 2.4**.

2.5.8 Water Depth Detector

A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station. This unit could either be hand-held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

2.5.9 Monitoring Position Equipment

Hand-held digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office) was provided and used to ensure that the water sampling locations were correct during the water quality monitoring work.

2.6 Maintenance and Calibration

- 2.6.1 The multi-functional meters were checked and calibrated before use. Multi-functional meters were certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at three monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before commencement of monitoring and after completion of all measurements each day. Calibration was not conducted at each monitoring location as daily calibration is adequate for the type of DO meter employed.
- 2.6.2 Sufficient stocks of spare parts were provided and maintained for replacements when necessary. Backup monitoring equipment was prepared for uninterrupted monitoring during equipment maintenance or calibration during monitoring.

2.7 Action and Limit Levels

2.7.1 The Action and Limit Levels have been set based on the derivation criteria specified in the Updated EM&A Manual and Detailed DCM Plan, as shown in **Table 2.6** below.

Table 2.6 Criteria of Action and Limit Levels for Water Quality

Parameters	Action	Limit				
Construction Pha	Construction Phase Impact Monitoring					
DO in mg/L	≤ 5 %-ile of baseline data	≤ 4				
SS in mg/L	≥ 95 %-ile of baseline data or	≥ 99 %-ile of baseline data or 130%				
	120% of control station's SS at	of control station's SS at the same				
	the same tide of the same day of	tide of the same day of measurement,				
	measurement, whichever is higher	whichever is higher				
Turbidity in	≥ 95 %-ile of baseline data or	≥ 99 %-ile of baseline data or 130%				
NTU	120% of control station's	of control station's turbidity at the				
	turbidity at the same tide of the	same tide of the same day of				
	same day of measurement,	measurement, whichever is higher				
	whichever is higher					
Temperature in °C	1.8°C above the temperature recorded at representative control station at the same tide of the same day	2°C above the temperature recorded at representative control station at the same tide of the same day				
Total Alkalinity in mg/L	≥ 95 %-ile of baseline data or 120% of representative control station at the same tide of the same day, whichever is higher	≥ 99 %-ile of baseline data or 130% of representative control station at the same tide of the same day, whichever is higher				

2.7.2 Based on the baseline monitoring data and the derivation criteria specified above, the Action/Limit Levels have been derived and are presented in **Table 2.7** and **Table 2.8** for both dry seasons (October – March) and wet seasons (April – September).

Table 2.7 Derived Action and Limit Levels for Water Quality Monitoring (Dry Season)

Parameters	Action	Limit
Construction Pha	ase Impact Monitoring	
DO in mg/L	≤ 7.13	≤ 4
SS in mg/L	≥ 8 or 120% of control station's SS at the same tide of the same day of measurement, whichever is higher	≥ 10 or 130% of control station's SS at the same tide of the same day of measurement, whichever is higher
Turbidity in	\geq 5.6 or 120% of control station's	≥ 12.8 or 130% of control station's

Parameters	Action	Limit
NTU	turbidity at the same tide of the	turbidity at the same tide of the same
	same day of measurement,	day of measurement, whichever is
	whichever is higher	higher
Temperature in °C	1.8°C above the temperature recorded at representative control station at the same tide of the same day	2°C above the temperature recorded at representative control station at the same tide of the same day
Total Alkalinity in mg/L	≥116 or 120% of control station's Total Alkalinity at the same tide of the same day of measurement, whichever is higher	≥ 118 or 130% of control station's Total Alkalinity at the same tide of the same day of measurement, whichever is higher

Notes:

- "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths. i.
- ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- iii. For turbidity, SS and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than

Table 2.8 Derived Action and Limit Levels for Water Quality (Wet Season)

Action	Limit			
Construction Phase Impact Monitoring				
≤ 5.28	≤ 4			
≥ 12 or 120% of control station's	≥ 14 or 130% of control station's SS			
SS at the same tide of the same	at the same tide of the same day of			
day of measurement, whichever is	measurement, whichever is higher			
higher				
\geq 4.0 or 120% of control station's	\geq 4.3 or 130% of control station's			
turbidity at the same tide of the	turbidity at the same tide of the same			
same day of measurement,	day of measurement, whichever is			
whichever is higher	higher			
1.8°C above the temperature recorded at representative control station at the same tide of the same day	2°C above the temperature recorded at representative control station at the same tide of the same day			
≥ 116 mg/L or 120% of	≥ 118 mg/L or 130% of			
representative control station at the	representative control station at the			
same tide of the same day,	same tide of the same day,			
whichever is higher	whichever is higher			
	ase Impact Monitoring ≤ 5.28 ≥ 12 or 120% of control station's SS at the same tide of the same day of measurement, whichever is higher ≥ 4.0 or 120% of control station's turbidity at the same tide of the same day of measurement, whichever is higher 1.8°C above the temperature recorded at representative control station at the same tide of the same day ≥ 116 mg/L or 120% of representative control station at the same tide of the same day,			

Notes:

- "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- ii.
- For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits. For turbidity, SS and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than iii. the limits.

- 2.7.3 If exceedances were found during water quality monitoring, the actions in accordance with the Event and Action Plan shall be carried out according to **Appendix G**.
- 2.8 Monitoring Results and Observations
- 2.8.1 During the reporting period, general water quality monitoring at all the eleven monitoring stations and regular DCM monitoring including monitoring stations S1, S2A and S3 were conducted on 2, 4, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28 & 30 October 2019. Monitoring results of 7 key parameters: Salinity, DO, turbidity, SS, pH, temperature and total alkalinity in this reporting month, are summarized in **Table 2.9**, and details results are presented in **Appendix D**.

Table 2.9 Summary of Impact Water Quality Monitoring Results

					Parame	eters			
Locations		ons Salinity	Dissolved Oxygen (mg/L)			Turbidit	Suspended	Temp	Total Alkalinity
		(ppt)	Surface & Middle	Bottom	рН	pH y (NTU)	Solids (mg/L)	. (°C)	(mg/L) note ii
	Avg.	28.29	6.62	6.62	8.09	3.5	8.50	28.6	112.0
B1	Min.	24.29	5.92	5.83	7.82	2.4	2.00	26.9	110.0
	Max.	30.40	7.45	7.45	8.38	5.2	22.00	30.5	114.0
	Avg.	28.28	6.62	6.56	8.08	3.5	8.76	28.6	111.9
B2	Min.	24.20	5.66	5.75	7.83	2.4	3.00	26.9	110.0
	Max.	30.61	7.26	7.21	8.37	5.0	28.00	30.4	114.0
	Avg.	28.28	6.63	6.64	8.06	3.6	9.43	28.6	111.8
В3	Min.	24.21	5.93	5.87	7.79	2.4	3.00	26.8	109.0
	Max.	30.47	7.45	7.42	8.35	5.5	32.00	30.0	114.0
	Avg.	28.28	6.63	6.63	8.09	3.5	9.54	28.6	111.9
B4	Min.	24.27	5.90	6.00	7.79	2.4	2.00	26.7	109.0
	Max.	30.44	7.21	7.34	8.46	5.4	36.00	30.1	114.0
	Avg.	28.28	6.63	6.63	8.08	3.4	8.81	28.6	111.8
C1A	Min.	24.35	5.82	5.95	7.75	2.4	2.00	26.0	109.0
	Max.	30.55	7.46	7.28	8.41	5.1	25.00	30.7	114.0
	Avg.	28.26	6.62	6.62	8.08	3.5	8.73	28.5	111.9
C2A	Min.	24.34	5.74	5.82	7.84	2.4	3.00	26.7	108.0
	Max.	30.57	7.39	7.49	8.37	5.6	28.00	30.7	114.0
	Avg.	28.25	6.63	6.60	8.08	3.6	8.97	28.5	112.1
CR1	Min.	24.22	5.68	5.94	7.75	2.4	2.00	26.9	108.0
	Max.	30.61	7.35	7.49	8.46	6.0	28.00	30.5	115.0
	Avg.	28.26	6.61	6.62	8.09	3.8	8.97	28.6	111.9
CR2	Min.	24.30	5.83	5.84	7.75	2.4	2.00	26.9	109.0
	Max.	30.55	7.41	7.38	8.47	6.6	25.00	30.2	114.0
	Avg.	28.26	6.62	6.59	8.08	3.4	8.97	28.6	112.0
F1A	Min.	24.20	5.68	5.72	7.77	2.3	3.00	26.9	108.0
	Max.	30.63	7.48	7.38	8.35	5.3	23.00	30.5	114.0
	Avg.	28.29	6.63	6.61	8.07	3.4	8.95	28.5	111.8
H1	Min.	24.37	5.77	5.76	7.81	2.4	2.00	26.9	109.0
	Max.	30.61	7.39	7.39	8.36	5.1	23.00	30.4	114.0
	Avg.	28.32	6.58	6.57	8.07	3.4	9.46	28.6	111.8
M1	Min.	24.52	5.74	5.91	7.75	2.4	2.00	26.6	109.0
	Max.	30.63	7.32	7.37	8.46	5.3	24.00	30.5	114.0
S1	Avg.	28.28	6.66	6.71	8.09	3.4	8.56	28.6	112.0
	Min.	24.31	5.78	5.89	7.77	2.4	2.00	27.0	107.0
	Max.	30.61	7.48	7.48			22.00	30.4	114.0
S2A	Avg.	28.29	6.58	6.62	8.07	3.4	9.24	28.6	111.9
	Min.	24.21	5.76	5.91	7.80	2.3	2.00	26.9	105.0
-	Max.	30.61	7.35	7.39	8.36	5.2	26.00	30.0	114.0
S3	Avg.	28.28	6.62	5.02	8.06	4.0	9.18	28.6	112.1
	Min.	24.24	5.66	5.93	7.77	2.6	2.00	26.9	108.0
Note	Max.	30.48	7.39	7.38	8.49	7.0	26.00	30.5	115.0

Notes:

 [&]quot;Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Total alkalinity test is only conducted on DCM working day with reference to master programme in Appendix A.

iii. Monitoring at S1, S2A and S3 shall only be conducted during DCM work period referring to master programme in **Appendix A**.

- 2.8.2 The weather conditions during the monitoring period were mainly sunny and cloudy. Sea conditions for the majority of monitoring days were mainly moderate. No major pollution source and extreme weather which might affect the results were observed during the impact monitoring.
- 2.8.3 During the impact monitoring period for October 2019, thirty-four (34) of the General & Regular DCM water quality monitoring results of suspended solids (SS) obtained during the reporting period had exceeded Action Level. Thirty-five (35) of monitoring results had exceeded the relevant Limit Level of suspended solids (SS) during the reporting period.
- 2.8.4 Three hundred & five (305) of the General & Regular DCM water quality monitoring results of dissolved oxygen (DO) obtained during the reporting period had exceeded Action Level. None (0) of monitoring results had exceeded the relevant Limit Level of dissolved oxygen (DO) during the reporting period.
- 2.8.5 Two (2) of the General & Regular DCM water quality monitoring results of turbidity obtained during the reporting period had exceeded Action Level. None (0) of monitoring results had exceeded the relevant Limit Level of turbidity during the reporting period.
- 2.8.6 Investigation was carried out immediately for the exceedance case. The finding had shown that the exceedance was unrelated to the Project except for the SS exceedance on 2 October 2019, where the relevant site records are under review and the corresponding incident report would be marked as interim incident report. The complete incident report on 2 October 2019 will be presented in the next monthly report. However, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted. Details of the exceedance are presented in **Section 8**.
- 2.8.7 Mitigation measures minimizing the adverse impacts on water implemented are listed in the implementation schedule given in **Appendix B.**

3. Noise Monitoring

- 3.1 Monitoring Requirements
- 3.1.1 To ensure no adverse noise impact, noise monitoring is recommended to be carried out at the nearby noise sensitive receivers (NSRs) during construction phase.
- 3.1.2 In accordance with the Updated EM&A Manual, baseline noise level at the noise monitoring stations was established as presented in the Baseline Monitoring Report. Impact noise monitoring was conducted once per week in the form of 30-minutes measurements Leq, L10 and L90 levels recorded at each monitoring station between 0700 and 1900 hours on normal weekdays.
- 3.1.3 In accordance with the Updated EM&A Manual, additional weekly impact monitoring should be carried out during respective restricted hours period (1900 0700 hours) if the construction works were conducted at evening and night time. Additional weekly noise monitoring was conducted once per week in the form of 5-minutes measurements Leq, L10 and L90 levels recorded at each monitoring station between 1900 and 0700 hours as well as public holidays and Sundays.
- 3.2 Noise Monitoring Parameters, Time, Frequency
- 3.2.1 Impact noise monitoring was conducted weekly in the reporting period between 0700-1900 hours on normal weekdays. Additional impact noise monitoring was conducted weekly in the reporting period between 1900-0700 hours on all days as well as public holidays and Sundays.
- 3.2.2 Construction noise level measured in terms of the A-weighted equivalent continuous sound pressure level (LAeq). Leq 30min was used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. Leq 5mins was used as the monitoring parameter for the time period between 1900 and 0700 hours as well as public holidays and Sundays. **Table 3.1** summarizes the monitoring parameters, frequency and duration of the impact noise monitoring and additional impact noise monitoring. The monitoring schedule is provided in **Appendix C**.

Table 3.1 Noise Monitoring Parameters, Time, Frequency and Duration

Monitoring Station	Time	Duration	Parameters
M1/ N_S1, M2/ N_S2, M3/ N_S3	Day time: 0700-1900 hrs (during normal weekdays)	Once per week $L_{\text{eq 5min}}/L_{\text{eq 30min}}$ (average of 6 consecutive $L_{\text{eq 5min}}$)	L _{eq} , L ₁₀ & L ₉₀
M1/ N_S1, M2/ N_S2, M3/ N_S3	Evening time: 1900-2300 hrs (including normal weekdays, also public holidays and Sundays)	Once per week $L_{eq 5min}$ (3 sets of $L_{eq 5min}$)	L _{eq} , L ₁₀ & L ₉₀
M1/ N_S1, M2/ N_S2, M3/ N_S3	Night time: 2300-0700 hrs (including normal weekdays, also public holidays and Sundays)	Once per week Leq 5min (3 sets of Leq 5min)	L _{eq} , L ₁₀ & L ₉₀

3.3 Noise Monitoring Locations

3.3.1 Three noise monitoring locations for impact monitoring and additional impact monitoring at the nearby sensitive receivers are shown in **Figure 3.1.**

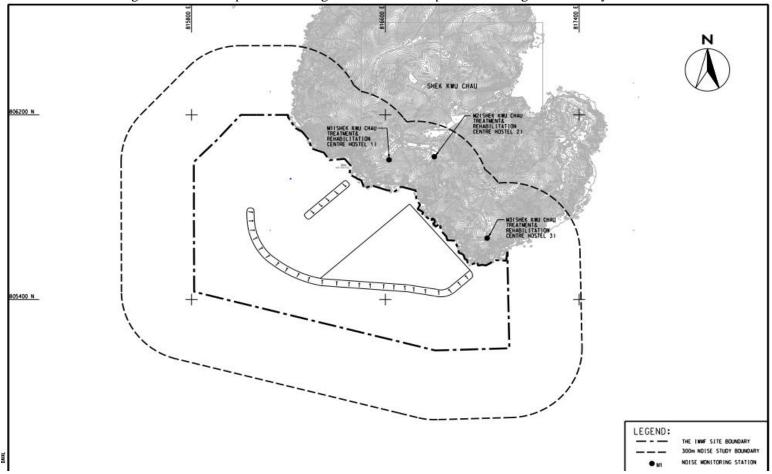


Figure 3.1 Noise monitoring locations at SKC

- 3.3.2 M1, M2 and M3 are Shek Kwu Chau Treatment and Rehabilitation Centre Hostel 1, 2 and 3 respectively of The Society for the Aid and Rehabilitation of Drug Abusers (SARDA) located at southern part of Shek Kwu Chau.
- 3.3.3 Measurements at M1 & M3 were conducted at a point 1m from the exterior of the sensitive receivers building façade and at a position 1.2m above the ground. Measurement setup at M3 has been varying with minor adjustment to minimize the disturbance to the users of Treatment Centre. Measurement at M2 was conducted at a point 1m from building façade of the ceiling of 1st floor level for avoidance of mutual disturbance with users of Treatment Centre. The minor adjustment of monitoring locations, which were in favour to mutual convenience with the users of Treatment Centre, were found with no effect on monitoring result based on on-site observation and experience from the Baseline monitoring of the Project. The noise monitoring stations are summarized in **Table 3.2** below.

Table 3.2 Noise Monitoring Location

Station	NSR ID in EIA Report	Noise Monitoring Location	Type of sensitive receiver(s)	Measurement Type
M1	N_S1	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 1	Residential	Façade
M2	N_S2	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 2	Residential	Façade
M3	N_S3	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 3	Residential	Façade

- 3.4 Impact Monitoring Methodology
- 3.4.1 At each designated monitoring location, measurements of six 5-minutes A-weighted equivalent sound pressure level ["Leq 5min"] was carried out between 0700 and 1900 hours for daytime measurements on a normal weekdays (exclude Sunday or general holiday). The measured six impact noise levels at each monitoring location shall then be averaged in logarithmic scale and expressed in terms of the 30 minutes A-weighted equivalent continuous sound pressure level (Leq 30min) for the time period between 0700 and 1900 hours on normal weekdays.
- 3.4.2 At each designated monitoring location, measurements of three 5-minutes A-weighted equivalent sound pressure level [" $L_{eq.5min}$ "] was carried out between 1900 and 0700 hours for evening time and night time measurements.
- 3.4.3 The monitoring procedures are as follows:
 - The microphone head of the lead level meter was normally positioned 1m exterior of the noise sensitive façade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
 - The battery condition was checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - Frequency weight: A
 - Time weighting: Fast
 - Measurement time: 5 minutes
 - Prior to and after noise measurement, the meter was calibrated using the calibrator for 94.0 dB at 1000Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement was required after re-calibration or repair of the equipment.

- For Noise monitoring was carried out for 30 mins by sound level meter. At the end of the monitoring period, noise levels in terms of L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded when the equipment were checked and inspected.
- All the monitoring data within the sound level meter system was downloaded through the computer software.

3.5 Monitoring Equipment

- 3.5.1 Integrated sound level meter was used for the noise monitoring. The meter shall comply with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications.
- 3.5.2 Equipment used in the impact noise monitoring programme is summarized in **Table**3.3 below. Calibration certificates for the noise monitoring equipment are attached in **Appendix H**.

Table 3.3 Impact Noise Monitoring Equipment

Equipment	Brand and Model
Sound Level Meter	NTi XL2
	SVAN 971
Sound Level Meter Calibrator	SvanTek SV33B

3.6 Maintenance and Calibration

- 3.6.1 The maintenance and calibration procedures were as follows:
 - The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator were checked and calibrated at yearly intervals
 - Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0dB.

3.7 Action and Limit Levels

3.7.1 The Action/Limit Levels in line with the criteria of Practice Note for Professional Persons (ProPECC PN 2/93) "Noise from Construction Activities – Non-statutory Controls" and Technical Memorandum on Environmental Impact Assessment Process issued by HKSAR Environmental Protection Department ["EPD"] under the Environmental Impact Assessment Ordinance, Cap 499, S.16 is presented in **Table 3.4**.

Table 3.4 Action and Limit Levels for Noise per Updated EM&A Manual

Time Period	Action	Limit (dB(A))	
0700-1900 hrs on normal	When one documented	75 dB(A)	
weekdays	complaint is received	/3 dB(A)	

Notes: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

- 3.7.2 If exceedances were found during noise monitoring. The actions in accordance with the Event and Action Plan shall be carried out according to **Appendix I**.
- 3.8 Monitoring Results and Observations
- 3.8.1 Impact monitoring for noise impact for daytime was carried out on 2, 8, 14, 21 & 28 October 2019. Impact monitoring for noise impact for evening time and night time was carried out on 2&3, 8&9, 14&15, 21&22, 28&29 October 2019. The impact noise levels at Noise Monitoring Stations at SKC (i.e. M1/ N_S1 to M3/ N_S3) are summarized in **Table 3.6**, **Table 3.7** and **Table 3.8** respectively. Details of noise monitoring results are presented in **Appendix J**.
- 3.8.2 Major construction activity, major noise source and extreme weather which might affect the results were recorded during the impact monitoring.
- 3.8.3 According to our field observations, the major noise source identified at the designated noise monitoring station in the reporting month are summarised in **Table 3.5**:

Table 3.5 Summary of Field Observation

Monitoring Station	Major Noise Source
M1	Air-conditioning units nearby
M2	Nil
M3	Air-conditioning units nearby, dog barking

No data from impact monitoring during daytime has exceeded the stipulated limit level at 75 dB(A).

Table 3.6 Summary of Impact Noise Monitoring Results during Daytime (0700 – 1900 hours)

Location	Measured Noise Level in dB(A)		
	Range of Leq 30min	Range of L _{10 5min}	Range of L _{90 5min}
M1	45.0 – 63.1	46.1 – 64.5	42.5 – 56.5
M2	49.8 – 62.2	49.9 – 68.0	47.1 – 57.5
M3	50.6 – 58.9	51.7 – 71.1	46.1 – 54.7

Applicable mitigation measures for construction works are fully implemented as shown in **Appendix B**, where double-glazed windows and air conditioning system were also installed and confirmed operable for the NSRs (N_S1, N_S2 & N_S3).

During the noise monitoring event, frontline staff of ET had inquired the treatment centre users on any noise disturbance from the construction activities at evening and night time, where no complaint and adverse opinions was received.

Data from impact monitoring during evening time and night time were compared with the NCO criteria. Where site inspection and auditing on Contractor's record have shown that the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority for construction works during restricted hours were followed. No inappropriate practice was spotted during evening time and night time construction works, thus the stipulated requirement on noise impact control during night time and evening time was achieved.

Table 3.7 Summary of Additional Impact Noise Monitoring Results during Evening Time (1900 - 2300 hours)

Location	Measured Noise Level in dB(A)		
	Range of Leq 5min	Range of L _{10 5min}	Range of L _{90 5min}
M1	46.0 – 58.7	47.4 – 61.1	44.7 – 55.1
M2	47.5 – 59.9	48.7 – 63.8	45.8 – 55.9
M3	47.4 – 57.0	48.9 – 59.2	44.7 – 53.3

Table 3.8 Summary of Additional Impact Noise Monitoring Results during Night Time $(2300-0700\ hours)$

Location	Measured Noise Level in dB(A)		
	Range of Leq 5min	Range of L _{10 5min}	Range of L _{90 5min}
M1	43.9 – 57.5	44.4 – 59.2	43.1 – 54.2
M2	47.9 – 60.1	48.8 – 62.9	45.4 – 56.6
M3	44.2 – 55.9	44.9 – 57.8	43.1 – 53.2

4. WASTE

- 4.1 The waste generated from this Project includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.
- 4.2 As advised by the Contractor, 0 m³ of C&D material was generated on site in the reporting month. For C&D waste, no metals were generated and collected by registered recycling collector. 0 kg of paper was generated on site and collected by the registered recycling collector. No plastic waste was collected by registered recycling collector. 0 L of chemical waste was collected by the licensed chemical waste collector. 0 m³ of other types of wastes (e.g. general refuse) were generated on site and disposed of at designated landfill. 7,190 m³ of fill rock and 9887.5 m³ of fill sand were imported during the reporting period.
- 4.3 751 m³ of dredged sediment in bulk quantity was dumped according to its dumping permit (EP/MD/20-051) during the reporting period.
- 4.4 Chemical waste generated from the cleaning of oil stain and leakage on deck of barges was stored in the chemical waste storage area on the barges.
- 4.5 With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table 4.1**. Details of cumulative waste management data are presented as a waste flow table in **Appendix K**.

Table 4.1 Quantities of Waste Generated from the Project during October 2019

		Actual Quar	ntities of Iner	t C&D Mater	rials Generate	d Month	ly		I	Actual Quant	ities of C&D V	Vastes Gener	ated Monthl	ly
	Total	Hard Rock and Large	Reused in	Reused in	Dismosad	Im	ported Fi	11		Domass /				Others,
Reporting Month	Total Quantity Generated	Broken Concrete (see Note 1)	the Contract	other Projects	Disposed as Public Fill	Sand	Public Fill	Rock	Metals	Paper / cardboard packaging	Plastics (see Note 2)	Chemica	ıl Waste	e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(i	n ,000m ³)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000m ³)
October 2019	0	0	0	0	0	9.8875	0	7.19	0	0	0	0	0	0

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.
- 4.6 Although there is not much waste generation anticipated in the coming month from the Project, the Contractor is advised to sort and store any solid and liquid waste on-site properly prior to disposal.

5. CORAL

- 5.1 Coral Monitoring Requirements
- 5.1.1 To monitor the health condition of corals during different phases, corals located within areas likely to be affected by the Project, corals located at control sites (areas unlikely to be affected by the Project), the trans-located coral colonies as well as the tagged natural coral colonies at the recipient site were chosen, in order to identify any adverse indirect impact from the marine works. The size, percentage cover and health condition of corals (i.e. any sign of abnormal appearance, such as layer of mucus, bleaching, partial mortality etc.) at representative transects should be recorded during each monitoring.
- 5.2 Coral Monitoring Parameters, Time, Frequency
- 5.2.1 Rapid Ecological Assessment (REA) survey was conducted on 26 June 2018 at the suggested control site and indirect impact site within two weeks before commencement of the construction work which was 29 June 2018. 10 selected hard coral colonies with the similar species were tagged at both control and indirect impact sites. Following coral translocation in the recipient site R3, 16 coral colonies attached to rocks less than 50 cm in diameter were translocated and tagged, as well as 10 selected natural coral colonies, at the recipient site. One additional REA survey was conducted in December 2018 to further assess the seabed condition at Indirect Impact Site after Typhoon Mangkhut.
- 5.2.2 Tagged coral colonies at the suggested control site and indirect impact site are being monitored weekly for the first month and followed by monthly monitoring for two months. Quarterly monitoring will be carried out after the first three-months monthly monitoring for until the end of the construction phase. The selected Control Site is located at Yuen Kong Chau of Soko Islands about 7 km away from the project area. Tagged coral colonies at the proposed recipient site are being monitored quarterly for one year. The selected recipient site R3 is located at the opposite side of the Project area at about 2 km away. The detailed survey of the Control Site and Impact Site were conducted before the commencement of the Construction Phase.
- 5.2.3 Monitoring recorded the following parameters (using the same methodology adopted during the pre-translocation survey); the size, presence, health conditions (percentage of mortality/bleaching) and percentage of sediment of each tagged coral colony. The general environmental conditions including weather, sea, and tidal conditions of impact site, control site and recipient site were monitored.
- 5.2.4 **Table 5.1** summarizes the monitoring locations, time and frequency of the tagged coral colonies monitoring. The monitoring schedule is provided in **Appendix C**.

Table 5.1 Tagged Coral Monitoring Locations, Time and Frequency

Monitoring Location	Monitoring Month/Year	Frequency	No. of Monitoring Survey
	1 st Month	Weekly Survey	4
	2 nd to 3 th Months	Monthly Survey	2
10 selected hard coral	4 th Month (postponed	Re-tagging of Cora	al Colonies in Indirect
colonies at control site /	to 5 th month due to	Impact Site after Ty	phoon Mangkhut
indirect impact site	diver accident in Shek		
	Kwu Chau in October		
	2018)		

Monitoring Location	Monitoring	Frequency	No. of Monitoring
Tylomeoring Location	Month/Year		Survey
	4 th Month (postponed	00 0	al Colonies in Control
	to 5 th month due to	Site after Typhoon N	Mangkhut
	diver accident in Shek		
	Kwu Chau in October		
	2018 and further		
	postpone to 6 th month		
	due to adverse		
	weather)		
	5 th Month (postponed	Post Re-tagging	1
	to 6 th month due to	Monthly Survey	
	diver accident in Shek		
	Kwu Chau and further		
	postponed to 7 th		
	month due to delay of		
	re-tagging activities at		
	both Indirect Impact		
	Site and Control Site)		
	7 th to 76 th Months	Quarterly Survey	23
	(postponed to 8 th to		
	76 th month due to		
	diver accident in Shek		
	Kwu Chau in October		
	2018)		
16 translocated hard			
coral colonies and 10 selected natural hard	1st Year	Quarterly Survey	4
coral colonies at	1 1001	Quarterly Survey	7
recipient site R3			

5.3 Coral Monitoring Locations

5.3.1 Location of the ten tagged coral colonies at each of the proposed indirect impact site (re-tagging after typhoon Mangkhut), control site (baseline) and recipient site R3 (translocation) are shown in **Figure 5.1**, **Figure 5.2** and **Figure 5.3** respectively:

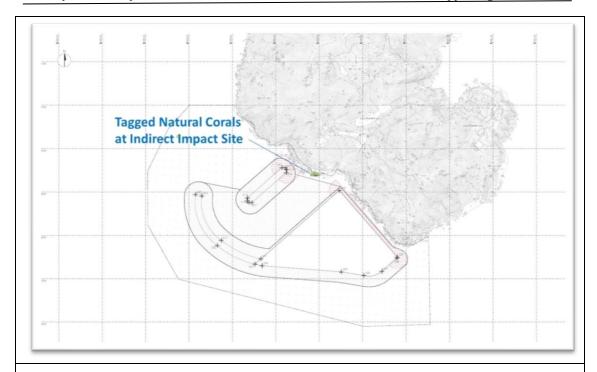


Figure 5.1 Tagged Natural Corals at Indirect Impact Site Near SKC for re-tagging after typhoon Mangkhut

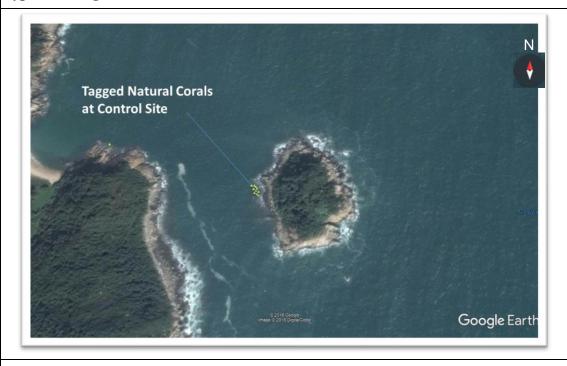


Figure 5.2 Tagged Natural Corals at Control Site Near Yuen Kong Chau for re-tagging after typhoon Mangkhut

Figure 5.3 Tagged Translocation Corals at Recipient Site R3 near SKC

5.3.2 The GPS coordinates of the tagged coral colonies, retagged coral colonies and recipient site were shown in **Table 5.2**, **Table 5.3** and **Table 5.4** respectively.

Table 5.2 Tagged Natural Corals during Baseline and Re-tagged Natural Corals after Typhoon Manghkut at Control Site near Yuen Long Chau

Coral #	GPS Coo	ordinates
1	N22°09'45.96"	E113°54'57.81"
2R	N22°11'29.12"	E113°59'09.01"
3	N22°09'45.81"	E113°54'57.78"
4	N22°09'45.70"	E113°54'57.95"
5R	N22°11'29.10"	E113°59'09.18"
6	N22°09'45.75"	E113°54'58.02"
7R	N22°11'29.17"	E113°59'08.86"
7	N22°09'45.65"	E113°54'57.94"
8	N22°09'45.53"	E113°54'57.90"
9	N22°09'46.23"	E113°54'54.70"
10R	N22°11'29.18"	E113°59'08.91"

Notes:

Table 5.3 Re-tagged Natural Corals after Typhoon Manghkut at Indirect Impact Site near SKC

Coral # note i	GPS Coordinates		
11R	N22°11'29.14"	E113°59'08.92"	
12R	N22°11'29.12"	E113°59'09.01"	
13R	N22°11'29.11"	E113°59'09.07"	
14R	N22°11'29.13"	E113°59'09.12"	
15R	N22°11'29.10"	E113°59'09.18"	
16R	N22°11'29.07"	E113°59'09.23"	

i. The re-tagged corals were marked as #R.

Coral # note i	GPS Coordinates		
17R	N22°11'29.17"	E113°59'08.86"	
18R	N22°11'29.14"	E113°59'08.94"	
19R	N22°11'29.20"	E113°59'08.81"	
20R	N22°11'29.18"	E113°59'08.91"	

Notes:

Table 5.4 GPS Coordinates of Recipient Site R3

Site	GPS Coordinates		
R3	N22°11'43.69"	E113°28.99"	

- 5.4 Impact Monitoring Methodology
- 5.4.1 Health status of coral was assessed by the following criteria:
 - Hard coral: Percentage of surface area exhibiting partial mortality and blanched/bleached area of each coral colony and degree of sedimentation.
- 5.5 Action and Limit Levels
- 5.5.1 Monitoring result was reviewed and compared against the below Action Level and Limit Level (AL/LL) as set with the below **Table 5.5** and **Table 5.6**.

i. The re-tagged corals were marked as #**R**.

Table 5.5 Action and Limit Levels for Construction Phase Coral Monitoring

Parameter	Action Level	Limit Level		
Mortality	a 15% increase in the percentage of partial mortality on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not	on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not recorded on the tagged corals at the		

Table 5.6 Action and Limit Levels for Post-Translocation Coral Monitoring

Parameter	Action Level	Limit Level
Mortality	Monitoring a 15% increase in the percentage of partial mortality on the corals occurs at more than 20% of the translocated coral colonies	mortality on the corals occurs at more than 20% of the translocated coral colonies that is not recorded on the original corals in the recipient site,

- 5.5.2 If exceedance was found during coral monitoring. The actions in accordance with the Event and Action Plan should be carried out according to **Appendix L.**
- 5.6 Monitoring Results and Observations
- 5.6.1 No coral monitoring survey had been done during the reporting period and the 4th quarterly coral monitoring at both Indirect Impact Site and Control Site during construction phase would be schedule in December 2019.

6. MARINE MAMMAL

- 6.1 Monitoring Requirements
- 6.1.1 The marine mammal monitoring programme would focus on Finless Porpoise, as the study area near Shek Kwu Chau has been identified as a hotspot for this species, while the Chinese White Dolphins rarely occurred there in the past.
- 6.1.2 The monitoring will verify the predicted impacts on marine mammals, and examine whether the mitigation measures recommended in the EIA report have been effectively implemented to protect marine mammals from negative impacts from construction activities.
- 6.1.3 The Vessel-based Line-transect Survey, the Passive Acoustic Monitoring and the Land-based Theodolite Tracking will be conducted to provide systematic, quantitative measurements of occurrence, encounter rate, habitat use, movement and behavioural patterns of marine mammals within or near the Project Area during construction and operational phases.
- 6.1.4 The mammal monitoring works during construction consist of the following three survey methods:
 - Vessel-based Line-transect Survey to monitor the occurrence of Finless Porpoises (and Chinese White Dolphins) in the study area during construction works, by comparing with the findings of the pre-construction marine mammal monitoring;
 - Passive Acoustic Monitoring to study the usage of the Project Area and two
 control sites in South Lantau Waters by Finless Porpoise during construction works,
 in reference with the baseline findings of the pre-construction marine mammal
 monitoring; and
 - Land-based Theodolite Tracking to study the movement and behavioral pattern of Finless Porpoise within and around the Project Area during construction works.
- 6.1.5 The marine mammal observation works of Marine Mammal Exclusion Zone (MMEZ) and Marine Mammal Watching as two of the specific mitigation measures recommended in the approved EIA report shall be fully and properly implemented for the Project to minimize disturbance on Finless Porpoise during construction and operational phases.
- 6.2 Survey Methods
- 6.2.1 Vessel-based Line-transect Survey
- 6.2.1.1 For the vessel-based marine mammal surveys, the monitoring team adopted the standard line-transect method (Buckland et al. 2001) as same as that adopted during the EIA study and pre-construction phase monitoring to allow fair comparison of marine mammal monitoring results.
- 6.2.1.2 Eight transect lines are set at Southeast Lantau survey area, including Shek Kwu Chau, waters between Shek Kwu Chau and the Soko Islands, inshore waters of Lantau Island (e.g. Pui O Wan) as well as southwest corner of Cheung Chau as shown in **Figure 6.1** below:

Figure 6.1 Line Transects for Marine Mammal Surveys

6.2.1.3 The surveys should cover all 4 seasons in order to take natural fluctuation and seasonal variations into account for data analysis of distribution, encounter rate, density and habitat use of both porpoises and dolphins (if any). In comparison to the baseline monitoring results, results from the analysed construction phase monitoring data would allow the detection of any changes of their usage of habitat, in response to the scheduled construction works. The monitoring surveys shall be conducted throughout the construction phase involving marine construction work with the frequency shown in **Table 6.1** below:

Table 6.1 Vessel-based Line-transect Survey Frequency

Season	Months	Frequency
Peak Season	December, January, February, March, April & May	Twice per month
Non-peak Season	June, July, August, September, October & November	Once per month

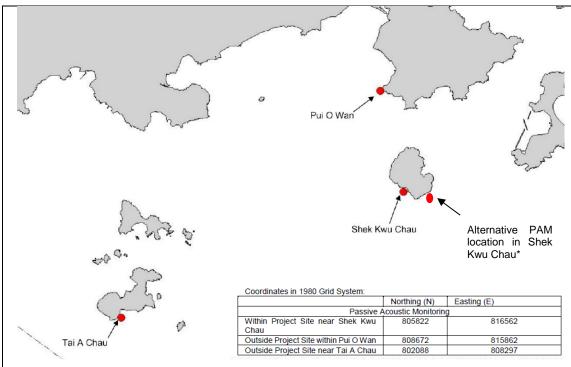
6.2.1.4 For each vessel survey, a 15-m inboard vessel with an open upper deck (about 4.5 m above water surface) would be used to make observations from the flying bridge area. Two experienced marine mammal observers (a data recorder and a primary observer) would make up the on-effort survey team, and the survey vessel would transit different transect lines at a constant speed of 13-15 km per hour. The data recorder shall search with unaided eyes and fill out the datasheets, while the primary observer shall search for dolphins and porpoises continuously through 7 x 50 marine binoculars. Both observers shall search the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0°). Two additional experienced observers shall be available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers shall be

- experienced in small cetacean survey techniques and identifying local cetacean species with extensive training by marine mammal specialist of the ET.
- 6.2.1.5 During on-effort survey periods, the survey team shall record effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance travelled in each series (a continuous period of search effort) with the assistance of a handheld GPS (Garmin eTrex Legend). Data including time, position and vessel speed would also be automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.
- 6.2.1.6 When porpoises or dolphins are sighted, the survey team shall end the survey effort, and immediately record the initial sighting distance and angle of the porpoise or dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel shall be diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, behavioural observations, and collection of identification photos (feasible only for Chinese White Dolphin). The perpendicular distance (PSD) of the porpoise or dolphin group to the transect line would then be calculated from the initial sighting distance and angle, which shall be used in the line-transect analysis for density and abundance estimation.
- 6.2.1.7 The line-transect survey data shall be integrated with a Geographic Information System (GIS) to visualize and interpret different spatial and temporal patterns of porpoise and dolphin distribution using their sighting positions collected from vessel surveys. Location data of porpoise and dolphin groups would be plotted on map layers of Hong Kong using a desktop GIS (e.g. ArcView© 3.1) to examine their distribution patterns in details. The encounter rate could be used as an indicator to determine areas or time periods of importance to porpoises within the study area. For encounter rate analysis of finless porpoises, only survey data collected under Beaufort 2 or below condition would be used for encounter rate analysis.
- 6.2.1.8 To take into account of the variations of survey effort across different sections within survey area, the quantitative grid analysis of habitat use would be conducted to examine finless porpoise usage among 1-km² grids within the Southeast Lantau survey area. For the grid analysis, SPSE (sighting density) and DPSE (porpoise density) values would be deduced for evaluation on level of porpoise usage. First, positions of on-effort porpoise sightings from the study period are plotted onto 68 grids (1 km x 1 km each) within the survey area. Sighting density grids and porpoise density grids shall then be normalized with the amount of survey effort conducted within each grid. The total amount of survey effort spent on each grid shall be calculated by examining the survey coverage on each line-transect survey to determine how many times the grid had been surveyed during study period. With the amount of survey effort calculated for each grid, the sighting density and porpoise density of each grid shall be further normalized (i.e. divided by the unit of survey effort).
- 6.2.1.9 The newly-derived unit for sighting density was termed SPSE, representing the number of on-effort sightings per 100 units of survey effort. In addition, the derived unit for actual porpoise density was termed DPSE, representing the number of dolphins/porpoise per 100 units of survey effort. Among the 1-km² grids that were partially covered by land, the percentage of sea area was calculated using GIS tools, and their SPSE and DPSE values were adjusted accordingly. The following formulae shall be used to estimate SPSE and DPSE in each 1-km² grid within the study area:

$$SPSE = ((S / E) \times 100) / SA\%$$

 $DPSE = ((D / E) \times 100) / SA\%$

where S = total number of on-effort sightings


D = total number of dolphins/porpoises from on-effort sightings

E = total number of units of survey effort

SA% = percentage of sea area

6.2.2 Passive Acoustic Monitoring (PAM)

The PAM aims to study the usage of an area by Finless Porpoise by using an array of automated static porpoise detectors (e.g. C-POD) which would be deployed at different locations to detect the unique ultra-high frequency sounds produced by Finless Porpoise. During the construction period, the PAM survey will be conducted including placement of two passive porpoise detectors outside the Project Area as control site (i.e. within Pui O Wan and to the south of Tai A Chau) and one porpoise detector within the Project Area (i.e. near Shek Kwu Chau) as shown in **Figure 6.2** below.

Note*: The alternative PAM device adjacent to the Project site was deployed from 5 Mar to 11 Apr 2019, which contained a full 37 days acoustic monitoring data set. After the confirmation of loss of the original PAM within the Project site, this data set was proposed to replace that of the original one, as consulted with AFCD accordingly.

Figure 6.2 Locations of Passive Acoustic Monitoring

6.2.3 These three detectors will be deployed on-site to carry out 24-hours monitoring for a period listed as **Table 6.2** below during the construction phase.

Table 6.2 PAM Deployment Period

Season	Months	Deployment Period
Peak Season	December, January, February,	At least 30 days during the peak
	March, April or May	months of porpoise occurrence
		in South Lantau waters

- 6.2.3.1 The automated static porpoise detectors shall detect the presence and number of finless porpoise and Chinese White Dolphins respectively over the deployment period, with the false signal such as boat sonar and sediment transport noise distinguished and filtered out. The detectors shall be deployed and retrieved by professional dive team on the seabed of the three selected location shown in **Figure 6.2**. During each deployment, the C-POD unit serial numbers as well as the time and date of deployments shall be recorded. Information including the GPS positions and water depth at each of the deployment locations shall also be obtained.
- 6.2.3.2 The diel patterns (i.e. 24-hour activity pattern) of finless porpoise occurrence among the three sites at Shek Kwu Chau, Tai A Chau and Pui O Wan shall be analyzed. Peaks and troughs of finless porpoise occurrence per hour of day would be identified and compared with the results obtained from pre-construction monitoring.
- 6.2.4 Land-based Theodolite Tracking
- 6.2.4.1 The Land-based Theodolite Tracking study would use the same station as in the AFCD monitoring study(same as the baseline monitoring location), which is situated at the southwest side of Shek Kwu Chau (GPS position: 22°11.47' N and 113°59.33' E) as shown in below **Figure 6.3**. The station was selected based on its height above sea level (at least 20 metres), close proximity to shore, and relatively unobstructed views of the entire Project Area to the southwest of Shek Kwu Chau. The height of the Shek Kwu Chau Station established by the HKCRP team is 74.6 m high at mean low water, and only a few hundred metres to the IWMF reclamation site, which is ideal for the purpose for the present behavioural and movement monitoring of finless porpoises as well during construction phase considering there as an un-obstructed vantage point at a height above the Project Site.

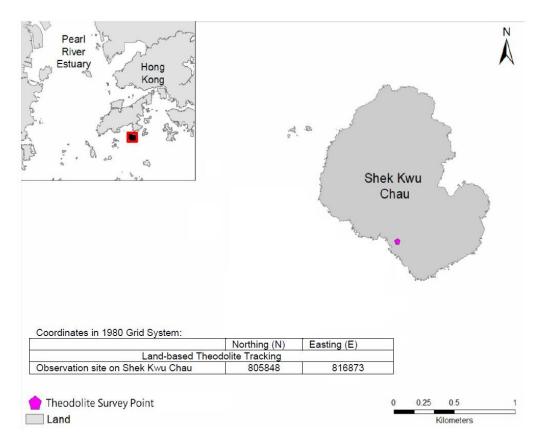


Figure 6.3 Locations of Land-based Theodolite Tracking

During the construction phase, Land-based Theodolite Tracking will be carried out for approximately six hours of tracking for each day of field work for a period listed as **Table 6.3** below, preferably at the initial stage of the construction period (i.e. December 2018 to May 2019).

Table 6.3 Land-based Theodolite Tracking Survey Period

Season	Months	Survey Period
Peak Season	December, January, February,	30 days during the peak months
	March, April or May	of porpoise occurrence in South
		Lantau waters

6.2.4.2 The monitoring period for land-based theodolite tracking will be proposed to be overlapped with the PAM. The monitoring team consists of one experienced theodolite operator and at least two field observers for assistance. To conduct theodolite tracking, the observers will search systematically for Finless Porpoise using the unaided eye and 7 x 50 handheld binoculars on each survey day throughout the study area. When an individual or group of porpoises is located, a theodolite tracking session will be initiated and focal follow methods will be used to track the porpoise(s). Behavioural state data (i.e. resting, milling, travelling, feeding and socializing) shall also be recorded every 5 minutes for the focal individual or group. Positions of porpoises and boats shall be measured using a digital theodolite connected to a laptop computer. This tracking survey will be conducted during the peak season between December 2018 and May 2019 for 30 surveys spanning across 15-16 weeks during the peak season to provide good temporal coverage during the initial stage of the construction period.

6.3 Specific Mitigation Measures

6.3.1 Monitored exclusion zones

- 6.3.1.1 During the installation/re-installation/relocation process of floating type silt curtains, in order to avoid the accidental entrance and entrapment of marine mammals within the silt curtains, a monitored exclusion zone of 250 m radius from silt curtain should be implemented. The exclusion zone should be closely monitored by an experienced marine mammal observer (MMO) for at least 30 minutes before the start of installation/re-installation/relocation process. If a marine mammal is noted within the exclusion zone, all marine works should stop immediately and remain idle for 30 minutes, or until the exclusion zone is free from marine mammals. The experienced marine mammal observer should be well trained to detect marine mammals. Binoculars should be used to search the exclusion zone from an elevated platform with unobstructed visibility. The marine mammal observer(s) shall be independent of the construction contractor and shall form part of the Environmental Team and have the power to call-off construction activities.
- 6.3.1.2 According to the Condition 2.25 of the FEP, MMEZ should be implemented during the installation/re-installation/relocation process of floating type silt curtains in order to avoid the accidental entrance and entrapment of marine mammals within the silt curtains. Also, marine construction works expected to produce underwater acoustic disturbance as per Condition 2.27 of the FEP, especially within December and May, would require the implementation of MMEZ, which currently all those specific construction activities have been replaced by less acoustically disturbing construction methods such as Deep Cement Mixing (DCM) and Precast Concrete Blocks Installation as discussed in Section 5.3 of the Detailed Monitoring

Programme on Finless Porpoise, however, MMEZ would also be implemented for precautionary purpose for DCM works.

6.3.1.3 A MMEZ with 250 m distance from the boundary of a work area shall be established during the above situation. A typical MMEZ is indicated in **Figure 6.4** for reference. The MMEZ serves as a monitoring approach to provide appropriate and immediate actions once finless porpoise or Chinese White Dolphin is sighted within the MMEZ. All MMEZ will be monitored by competent Marine Mammal Observers (MMOs) to be provided by the Environmental Team (ET) for the IWMF and trained by the Marine Mammal Monitoring Specialist of the ET who is independent from JV.

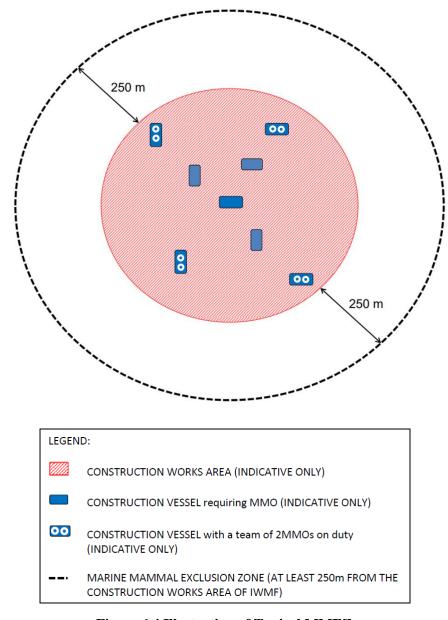


Figure 6.4 Illustration of Typical MMEZ

6.3.1.4 Prior to the commencement of construction activity, our MMOs shall ensure the boundary of a marine work area and setting up of the MMEZ for the work area and get access to the monitoring location on a barge or a lookout point where there is no obstructed views for monitoring the MMEZ during the construction activity. The

MMEZ shall be scanned thoroughly by a MMO for any presence of marine mammal e.g. finless porpoise for an initial period of 30 minutes. Construction activity shall only be commenced after the MMO has confirmed that the MMEZ is clear of the marine mammal for the initial period of 30 minutes. The MMO shall then inform the construction superintendent through mobile phone or handheld transceivers to certify the commencement of construction activity. The MMEZ monitoring shall be carried on throughout the period for all active construction activities requiring implementation of MMEZ.

- 6.3.1.5 When any mammal marine, e.g. Finless Porpoise, is detected by the MMO within the MMEZ during construction, the MMO shall inform the construction superintendent immediately through mobile phone or handheld transceivers to cease construction activity within the MMEZ. Construction activity shall not be re-commenced until the MMO confirms that the MMEZ is continuously clear of marine mammal for a period of 30 minutes. The MMO shall then inform the construction superintendent through mobile phone or handheld transceivers to certify the re-commencement of construction activity.
- 6.3.1.6 As there could be a number of Contractors working at the same time within a work area for the IWMF project, a full contact list of MMEZ monitoring team members of the ET and the relevant responsible construction superintendents of the Contractor at the site shall be prepared, updated regularly and circulated to all parties involved in the MMEZ monitoring. With a full contact list, our MMOs shall be able to find out the contacts of corresponding persons in case of marine mammal sighting within and near the MMEZ or emergent occurrence of any unpredictable impact on marine mammal.
- 6.3.1.7 If a marine mammal is still observed in close vicinity but outside the MMEZ, the MMO shall inform the construction superintendent about the presence of marine mammal. The MMO shall remain in position and closely observe the movement of the marine mammal as well as searching for the appearance of any other marine mammal within the MMEZ. No matter the marine mammal is observed within or in close vicinity but outside the MMEZ, the construction superintendent or relevant persons shall inform all vessel captains involved in construction activities around the MMEZ to pay special attention of the presence of the marine mammal in order to reduce chance of collision with them. In case of injury or live-stranded marine mammal being found within the MMEZ, the marine mammal observer shall immediately inform the construction superintendent to suspend construction activities within the works area and contact AFCD through "1823" marine mammal stranding hotline.
- 6.3.2 Marine mammal watching plan
- 6.3.2.1 Upon the completion of silt curtain installation/re-installation/relocation, all marine works would be conducted within a fully enclosed environment within the silt curtain. Hence exclusion zone monitoring would no longer be required. Subsequently, a marine mammal watching plan would be implemented.
- 6.3.2.2 Before commencement of dredging/sand blanket laying work at each designated area, a trained MMO shall check whether position frame silt curtains are ready, well prepared and operated without any obvious damage. Also, the MMO shall confirm the presence of the relevant frontline staff of the main contractor or its sub-contractors and engineers on board to ensure the effective communication, coordination and implementation of the response plan in relation to any incidents involving marine mammals within the waters surrounded by the position frame type

silt curtains and the work areas. Also, there are lookout points at an elevated level on each barge, clear and safe access at the edges of the derrick lighter/ flag-top barge for inspection during dredging/sand blanket laying works, provision of sufficient lighting is required if working at night.

- 6.3.2.3 During the operation, the inspection will be conducted daily. The MMO will walk along the edge of derrick lighter (DL) and flag-top barge (FB) along the position frame silt curtain or proper location without obstacles where appropriate to inspect the position frame silt curtain with naked eyes, the MMO will check that the position frame silt curtains are maintained in the correct positions with no obvious defects / entanglement and there is no observable muddy water passing through the position frame silt curtain system. Any floating refuse trapped by the silt curtain shall be removed as part of the regular inspection. For night inspection, spotlight will be used to provide sufficient brightness to assist the inspection in dark condition.
- 6.3.2.4 For the localized silt curtain re-deployment, MMO will conduct visual inspection to confirm that there is no presence of marine mammal within the localized silt curtain. Visual inspection will be conducted in every hour by MMO till confirming that there is not any marine mammal observed in the surrounding area of the frame type silt curtain. The duration will be subject to various conditions, e.g. weather or angle of observation. The works can only commence after confirming that the surrounding waters of the localized silt curtains has not contain any marine mammal. Thereafter, frontline staff, i.e. foremen, site agent, superintendents and engineers will assist our MMO in implementing the plan from the active work fronts within the waters surrounded by the silt curtains throughout the work period. The MMO will conduct regular check every 60 minutes to observe the presence of any marine mammal around the localized silt curtain or being trapped by the localized silt curtain. The MMOs will also check if the localized silt curtains are in correct positions.
- 6.3.2.5 The MMO shall fill up our Marine Mammal Sighting Record Sheet. After inspection, those records should be kept properly and submitted to the project team. In case there is any marine mammal being found, the MMO should carry out the response actions and communicate with relevant parties to stop and then resume work after the discovered marine mammal leaves. After lifting up and mobilization of silt curtain, the MMO will repeat the procedures of regular and visual inspection until the end of the construction works.
- 6.3.2.6 Each lookout point will have an unobstructed view to waters around the DL and FB. The MMO will move around the DL and FB to establish a clear and unobstructed view as much as they can without compromising the safety concern. When appropriate, the lookout point can be replaced by a proper location if unobstructed view can be assured.
- 6.4 Results and Observations
- 6.4.1 Vessel-based Line-transect Survey
- 6.4.1.1 The monthly survey was conducted on 10 October 2019. As this is the designated off-peak season (June November), one survey was completed. A total of 39.6 km on effort (transects only) survey length was completed, 68.9% of which was conducted at Beaufort Sea State 2 or better (**Table 6.4**). No sightings were recorded.

Table 6.4 Summary of Vessel-based Line-transect Survey Effort

Date	Area*	Beaufort	Effort (km)	Season	Vessel	Effort Type**
	SEL	1	5.0			
10 Oct 2019	SEL	2	22.3	AUTUMN	SMRUHK	P
	SEL	3	12.3			

^{*} As shown in **Figure. 6.1**

- 6.4.1.2 A review of the long term AFCD marine mammal monitoring programme, the EIA and the pre-construction baseline monitoring report for this project was conducted. Pre-construction baseline monitoring was conducted in Feb Apr 2018 and the EIA was conducted during the peak porpoise months (Dec 2008 to May 2009) and are not comparable to the survey month of October. The AFCD long term monitoring data and October 2018 impact survey result can be compared directly to October 2019 Impact Survey results. It is noted that the 4th month of impact monitoring is October 2018 and these data are included.
- 6.4.1.3 A review of the Beaufort Sea State in October survey conditions between 2009 and 2018 (only data available from AFCD at time of writing; (AFCD 2018¹; 2017²; 2016³; 2015⁴; 2014⁵; 2013⁶; 2012⁷; 2011⁸; 2010⁹) and Impact 2018) show that between 0% and 100 % of survey effort has been conducted at Beaufort Sea State 2 or better in the past. For this project in October 2019, 68.9 % of the survey was conducted at Beaufort Sea State 2 or better and, as such, survey conditions in October 2019 were typical of previous AFCD surveys.
- 6.4.1.4 A review of the porpoise sightings in the survey area for October between 2009-2018 (no effort was recorded in 2010) show that three (3) of the nine (9) years surveys in October record no porpoise sightings. For all weather conditions, and for the eight years data available, the years 2011, 2012 and 2015 conducted by AFCD and 2018 conducted by ET recorded zero (0) sightings, one (1) year recorded 1 sighting (2013 conducted by AFCD), one (1) year recorded 2 sightings (2017 conducted by AFCD) and three (3) years recorded 3 sightings (2009, 2014 and 2016 conducted by AFCD). Effort varied between years and the average number of sightings (per km) was 0.04 km⁻¹.
- 6.4.1.5 The impacts of the Project on marine mammals as predicted in the EIA were that construction activities would cause individuals to move away from the area. With only a small area being surveyed by vessels, with no control area, and as porpoise density is obviously low in such a small area, it is difficult to discern significant changes in sightings occurrence from vessel surveys alone. The sightings data presented in AFCD long term monitoring reports indicate that 0 sightings for the month of October is not unusual. It is noted that the encounter rate for October 2019 is consistent with the impact monitoring result of October 2018, prior to early construction stage at SKC, however, as sightings are rare in this month it is difficult to draw conclusions about impacts.
- 6.4.2 PAM and Land-based Theodolite Tracking
- 6.4.2.1 30 days of PAM surveys were started at 1 May 2019 and completed until the end of May 2019. Multiple PAM systems were deployed at three sites. The PAM system located at the IWMF was lost, however, an alternative data set has been identified. The PAM systems at the two control sites Tai A Chau and Pui O were recovered on 3 August 2019. A summary of marine mammal detections shows that porpoise

^{**} P (from AFCD) denotes the ON EFFORT survey on the transect line, not the adjoining passages

were recorded every day of deployment at each site, but at varying frequencies. Per the latest update from the specialist, detailed PAM and theodolite results will be ready in November 2019 and it shall be presented in 17th Monthly EM&A report (November 2019).

6.4.2.2 Whereas detailed diurnal analyses are still underway, each PAM site, including that adjacent to the Project site, records acoustic detections every day during PAM deployment, at varying frequencies. A comparison to baseline monitoring will be presented in subsequent reports.

Table 6.5 The total number of Finless Porpoise and Chinese White Dolphin acoustic detections

Location	No. of Days Detections_FP	No. FP_Detections	No. of Days Detections_CWD	No. CWD_Detections		
Pui O	42 (every day)	773	1	1		
Tai A Chau	42 (every day)	247	0	0		
Shek Kwu Chau	37 (every day)	258	0	0		

- 6.4.2.3 Theodolite surveys were completed in May 2019. In total, thirty four days of theodolite tracking were completed between February May 2019, comprising 167 hours and 49 minutes of observation. No Chinese white dolphin was observed and only one finless was recorded. A total of 2620 vessels of ten different types were observed and tracked within or in the proximity of the IWMF construction site.
- 6.4.2.4 The baseline theodolite tracking was conducted immediately prior to and during the site preparation activities of the IWMF site. The baseline data records a decrease in porpoise sightings as site preparation activities commenced and notes that the decrease was most likely due to the onset of site preparation activities. The impact theodolite tracking conducted for this study records a marked increase in the number of Project related vessels and platforms and, in agreement with baseline conclusions, shows a concomitant decrease in finless porpoise sightings.

Table 6.6 Porpoise, Vessel and Buoy Occurrence recorded during the IWMF Impact Monitoring Study, Feb - May 2019

									IWMF-		IWMF-		
							High		Related	IWMF-	Related	IWMF-Related	IWMF-
	Finless	Fishing	Speed	Container	Government	Research	Speed	Boat -	Construction	Related	Transportation	Construction	Related
Date	Porpoise	Boat	Boat	Boat	Boat	Vessel	Ferry	Others	Platform	Tug Boat	Boat	Boat	Bouy
2/21/2019	0	6	6	3	3	0	31	2	16	10		6	7
2/22/2019	0	11	3	3	1	1	20	4	39	6		8	11
2/28/2019	0	10	1	1	0	0	0	0		9		30	9
3/1/2019	1	8	0	9	1	0	0	2	17	7		29	11
3/4/2019	0	2	0	3	2	0	0			12		9	10
3/5/2019	0	7	0	5	2	0	0			9		22	9
3/12/2019	0	10	4	9	0	0	0		41	14		7	10
3/13/2019	0	14	2	8	1	0	0			18			9
3/15/2019	0	10	0	7	1	0	0			13		10	10
3/20/2019	0	5	0	6	1	0	0			4		16	11
3/21/2019	0	16	1	2	1	1	0		39	7		9	10
3/22/2019	0	0	0	0	0	0	0			4		6	10
3/26/2019	0	0	0	1	1	0	0			11		12	10
3/27/2019	0	8	1	5	0	0	0			6		9	9
3/29/2019	0	12	0	7	0	0	0			7	8	39	8
4/1/2019	0	10	0	6	0	0	0			5		20	7
4/3/2019	0	8	1	6	0	0	0		41	8		19	10
4/4/2019	0	3	3	7	0	0	0			8			10
4/8/2019	0	5	1	4	1	0	0			6			9
4/9/2019	0	6	0	11	1	0	0			6			11
4/10/2019	0	7	1	8	3	0	0			5		9	11
4/11/2019	0	6	1	4	0	0	0			11		38	10
4/12/2019	0	0	0	0	0	0	0			1	4	13	8
4/15/2019	0	4	0	3	0	0	0			7		9	9
4/18/2019	0	3	0	5	2	0	0			3		26	10
4/24/2019	0	11	0	7	0	0	0			3		25	11
4/25/2019	0	9	0	5	0	0	0			3		9	10
4/26/2019	0	9	0	3	0	1	0			8		19	8
4/29/2019	0	5	1	4	0	1	2			5		9	10
4/30/2019	0	4	1	1	0	0	0			3		3	9
5/7/2019	0	10	0	5	0	0	0			3		12	11,
5/8/2019	0	3	0	1	0	0	0			4	6	. 8	7
5/9/2019	0	7	2	4	0	0	0			7		17	7
5/10/2019	0	7	0	2	_ 1	0	0	0	15	7	9	37	9

6.4.3 Specific Mitigation Measures

Silt curtains were deployed for DCM during the reporting period. Teams of two MMO were on duty for continuous monitoring of the Marine Mammal Exclusion Zone (MMEZ) for DCM works, cluster MMEZ installation/re-installation/relocation process of silt curtains, and the marine mammal trapping checking and silt curtains inspection in accordance with the Detailed Monitoring Programme of Finless Porpoise and Marine Mammal Watching Plan respectively. Trainings for the MMO were provided by the ET prior to the aforementioned works, with a cumulative total of 98 individuals being trained and the training records kept by the ET. From the Marine Mammal Watching observation records and MMEZ monitoring log records, no Finless Porpoise or other marine mammals were observed within or around the MMEZ and silt curtains in the reporting month.

A Finless Porpoise carcass was observed by MMO on the sea southeast to the site boundary on 13 October 2019. The finless porpoise carcass was first seen at 13:30 as a suspected floating black object. After the observation by MMO, all construction activities were ceased until 14:20 since the suspect object was confirmed as the finless porpoise carcass by the Contractor and MMO did not found any marine mammal furthermore.

6.4.4 References

- 1. Agriculture, Fisheries and Conservation Department (AFCD) 2018. *Annual Marine Mammal Monitoring Programme April 2017-March 2018*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 2. Agriculture, Fisheries and Conservation Department (AFCD) 2017. *Annual Marine Mammal Monitoring Programme April 2016-March 2017*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR.

http://www.afcd.gov.hk/english/conservation/con mar/con mar chi/con mar chi ch i/con_mar_chi_chi.html

- 3. Agriculture, Fisheries and Conservation Department (AFCD) 2016. *Annual Marine Mammal Monitoring Programme April 2015-March 2016*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 4. Agriculture, Fisheries and Conservation Department (AFCD) 2015. Annual Marine Mammal Monitoring Programme April 2014-March 2015) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar_chi_chi_chi_http://www.afcd.gov.hk/english/conservation/con_mar_chi_chi_http://www.afcd.gov.hk/english/con_mar_chi_chi_http://www.afcd.gov.hk/en
- 5. Agriculture, Fisheries and Conservation Department (AFCD) 2014. *Annual Marine Mammal Monitoring Programme April 2013-March 2014*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR.

 <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_c
- 6. Agriculture, Fisheries and Conservation Department (AFCD) 2013. *Annual Marine Mammal Monitoring Programme April 2012-March 2013*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 7. Agriculture, Fisheries and Conservation Department (AFCD) 2012. *Annual Marine Mammal Monitoring Programme April 2011-March 2012*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 8. Agriculture, Fisheries and Conservation Department (AFCD) 2011. *Annual Marine Mammal Monitoring Programme April 2010-March 2011*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 9. Agriculture, Fisheries and Conservation Department (AFCD) 2010. *Annual Marine Mammal Monitoring Programme April 2009-March 2010*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR.

 <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_c

7. WHITE-BELLIED SEA EAGLE

7.1 Monitoring Requirement

- 7.1.1 On Shek Kwu Chau Island, a nest of WBSE is located about 60 m above ground within a hillside shrubland habitat, 130 m in-land from shore, about 550 m away from the proposed reclaimed land, with no human access. 3 phases monitoring programme will be comprised of pre-construction phase, construction phase and operation phase.
- 7.1.2 The Pre-Construction WBSE monitoring was started on 30 January 2018 and the location of WBSE nest was confirmed on 21 February 2018 and it is located at the western part of SKC Island (Figure 7.1). Two adults and two chicks were also recorded on 5th March 2018 survey till the end of the Pre-construction monitoring on 15th May 2018. Construction Phase monitoring were carried out followed by the commencement of the Construction Phase on 28th June 2018.
- 7.2 WBSE Monitoring Parameters, Time, Frequency
- 7.2.1 The objective of the construction phase monitoring should be to verify the utilisation of the area by WBSE, their responses to construction disturbance, as well as the effectiveness of the proposed mitigation measures. Throughout the construction phase, field surveys should be conducted twice per month during their core breeding season (from December to May), and once per month outside their core breeding season (from June to November). The monitoring frequency should be increased to weekly during the incubation period of each year. In order to confirm their foraging ground near the construction site, it is necessary to conduct daily monitoring during the first week of nestling period in each year.
- 7.2.2 Since the location of the WBSE nest was located at the southwest of SKC within the hillside shrubland, it is impossible to observe the eggs during incubation period. Therefore, monitoring with increased frequency during incubation period could not be carried out. Daily monitoring will be carried out once any chick is recorded during the monitoring day. The monitoring schedule during the reporting period is provided in **Appendix C**.

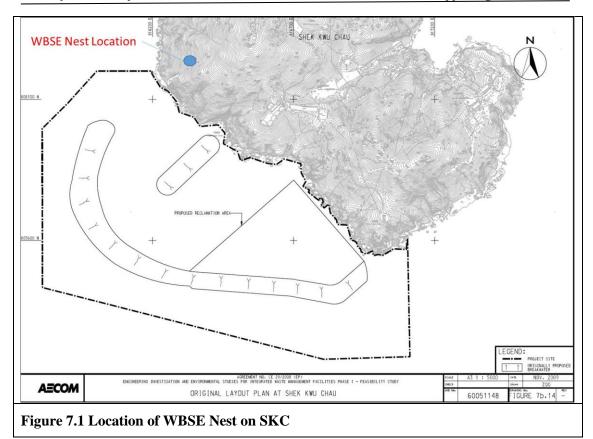
7.3 Monitoring Location

7.3.1 Since there are no suitable land footings along the coast of SKC, only boat surveys were conducted. On Shek Kwu Chau Island, a nest of WBSE is located about 60 m above ground within a hillside shrubland habitat, 130 m in-land from shore, about 550 m away from the proposed reclaimed land, with no human access.

7.4 Monitoring Methodology

- 7.4.1 Information to be collected included feeding, perching/roosting, preening, soaring, flying, nesting and territorial guarding and the time spent on each activity. The responses and reactions to any disturbance to the WBSEs were also recorded and examined in conjunction with the construction noise and/or other events in the vicinity. Other disturbances such as weather condition, or invasion by other fauna species were also recorded.
- 7.4.2 Binocular, scope, camera, lens and GPS device used are summarized as **Table 7.1** below:

Table 7.1 List of Equipment Used during Construction Phase Monitoring


Equipment	Quantity
Swarovski EL 8.5 x 42 Binocular	1
Swarovski EL Range 8 x 42 Binocular	1
Swarovski ATX 25-60 x 85 Spotting Scope	1
Canon 1Dx Mark II Camera	1
Canon EF300mm F2.8 Lens with Canon 2x Teleconverter	1
Canon PowerShot G7X Camera	1
Garmin GPSMAP 64S	1

- 7.4.3 If event such as absence of White-bellied Sea Eagle during a whole day of monitoring was found during WBSE monitoring, the actions in accordance with the Event and Action Plan should be carried out according to **Appendix M.**
- 7.5 Results and Observations
- 7.5.1 To verify the utilization of the area by WBSE, their responses to construction disturbance, as well as the effectiveness of the proposed mitigation measures. The 16th monthly construction phase monitoring was conducted once per month on 25 October 2019. Since there is no landing point along the western part of SKC, boat survey was used for the monitoring survey. In order to increase the chance of finding the WBSEs, monitoring survey was carried out early in the morning. The weather condition of monitoring survey was shown in **Table 7.2**.

Table 7.2 Weather Conditions during the WBSE Monitoring

Date	Condition	Temperature ($^{\circ}$ C)
25 October 2019	Northeast wind force 3 to 4Sunny	29

- 7.5.2 During the monitoring survey, two adults WBSEs were recorded staying next to the nest area. No abnormal behavior of the adults were recorded.
- 7.5.3 No disturbances from anthropogenic activities on the island were recorded during the monitoring survey. However, fishing boats moving close to the shore were recorded. Since the nesting tree is about 160m away from the shore and it is not accessible, fishing boat activities didn't show any direct disturbance to the WBSE nest. No invasion of other fauna species was recorded as well.
- 7.5.4 No abnormal behaviour of the recorded adults was observed during the October 2019 construction phase monitoring. Only two adults of WBSE were recorded (**Figure 7.2**). All marine works during the 16th month construction period did not show any affects to the WBSE.
- 7.5.5 A construction phase monitoring will be continued outside their core breeding season (between June to November) in order to monitor the utilization of the area by WBSE and their responses to construction disturbance.

7.5.6 Photo record of WBSE from the survey this month is shown below:

8. +SUMMARY OF MONITORING EXCEEDANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

8.1 The Environmental Complaint Handling Procedure is shown in below **Figure 8.1**:

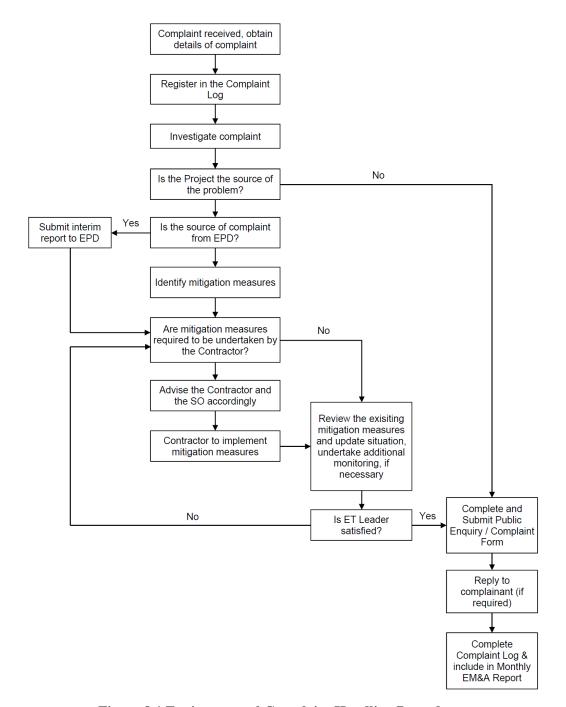


Figure 8.1 Environmental Complaint Handling Procedures

8.2 No exceedance of the Action and Limit Levels of the regular construction noise and WBSE monitoring was recorded during the reporting period.

Table 8.1 Summary of SS Compliance Status at Impact Stations (Mid-Ebb Tide)

Date	B1	B2	В3	B4	CR1	CR2	F1A	H1	S1	S2A	S3	M1
2-10-2019												
4-10-2019												
8-10-2019												
10-10-2019												
12-10-2019												
14-10-2019												
16-10-2019												
18-10-2019												
22-10-2019												
24-10-2019												
26-10-2019												
28-10-2019												
30-10-2019												
No. of SS Exceedances	1	2	2	3	4	4	4	1	3	3	5	6

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Action Level recorded at monitoring station located upstream/unrelated
stream (neither upstream nor downstream, far away) of the Project based on dominant
tidal flow
Exceedance of Limit Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Limit Level recorded at monitoring station located upstream/unrelated
stream of the Project based on dominant tidal flow
Upstream/unrelated stream station with respect to IWMF Project during the respective
tide based on dominant tidal flow
Downstream station with respect to IWMF Project during the respective tide based on
dominant tidal flow/station within the Project site
NA for measurement
Cancelled due to incident or adverse weather

Table 8.2 Summary of SS Compliance Status at Impact Stations (Mid-Flood Tide)

Date	B1	B2	В3	B4	CR1	CR2	F1A	H1	S1	S2A	S3	M1
2-10-2019												
4-10-2019												
8-10-2019												
10-10-2019												
12-10-2019												
14-10-2019												
16-10-2019												
18-10-2019												
22-10-2019												
24-10-2019												
26-10-2019												
28-10-2019												
30-10-2019												
No. of SS Exceedances	0	2	3	5	4	2	0	4	0	3	3	5

Legei	IU.
	No exceedance of Action Level and Limit Level
	Exceedance of Action Level recorded at monitoring station located downstream of the
	Project based on dominant tidal flow
	Exceedance of Action Level recorded at monitoring station located upstream/unrelated
	stream (neither upstream nor downstream, far away) of the Project based on dominant
	tidal flow
	Exceedance of Limit Level recorded at monitoring station located downstream of the
	Project based on dominant tidal flow
	Exceedance of Limit Level recorded at monitoring station located upstream/unrelated
	stream of the Project based on dominant tidal flow
	Upstream/unrelated stream station with respect to IWMF Project during the respective
	tide based on dominant tidal flow
	Downstream station with respect to IWMF Project during the respective tide based on
	dominant tidal flow/station within the Project site
	NA for measurement
	Cancelled due to incident or adverse weather

Table 8.3 Summary of DO Compliance Status at Impact Stations (Mid-Ebb Tide)

Date	B1	B2	В3	B4	CR1	CR2	F1A	H1	S1	S2A	S3	M1
2-10-2019												
4-10-2019												
8-10-2019												
10-10-2019												
12-10-2019												
14-10-2019												
16-10-2019												
18-10-2019												
22-10-2019												
24-10-2019												
26-10-2019												
28-10-2019												
30-10-2019												
No. of DO Exceedances	13	13	12	13	13	13	13	13	13	13	13	13

Legen	iu.
	No exceedance of Action Level and Limit Level
	Exceedance of Action Level recorded at monitoring station located downstream of the
	Project based on dominant tidal flow
	Exceedance of Action Level recorded at monitoring station located upstream/unrelated
	stream (neither upstream nor downstream, far away) of the Project based on dominant
	tidal flow
	Exceedance of Limit Level recorded at monitoring station located downstream of the
	Project based on dominant tidal flow
	Exceedance of Limit Level recorded at monitoring station located upstream/unrelated
	stream of the Project based on dominant tidal flow
	Upstream/unrelated stream station with respect to IWMF Project during the respective
	tide based on dominant tidal flow
	Downstream station with respect to IWMF Project during the respective tide based on
	dominant tidal flow/station within the Project site
	NA for measurement
	Cancelled due to incident or adverse weather

Table 8.4 Summary of DO Compliance Status at Impact Stations (Mid-Flood Tide)

Date	B1	B2	В3	B4	CR1	CR2	F1A	H1	S1	S2A	S3	M1
2-10-2019												
4-10-2019												
8-10-2019												
10-10-2019												
12-10-2019												
14-10-2019												
16-10-2019												
18-10-2019												
22-10-2019												
24-10-2019												
26-10-2019												
28-10-2019												
30-10-2019												
No. of DO Exceedances	13	13	11	13	13	13	13	13	10	13	13	12

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Action Level recorded at monitoring station located upstream/unrelated
stream (neither upstream nor downstream, far away) of the Project based on dominant
tidal flow
Exceedance of Limit Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Limit Level recorded at monitoring station located upstream/unrelated
stream of the Project based on dominant tidal flow
Upstream/unrelated stream station with respect to IWMF Project during the respective
tide based on dominant tidal flow
Downstream station with respect to IWMF Project during the respective tide based on
dominant tidal flow/station within the Project site
NA for measurement
Cancelled due to incident or adverse weather
Downstream station with respect to IWMF Project during the respective tide based on dominant tidal flow/station within the Project site NA for measurement

Table 8.5 Summary of Turbidity Compliance Status at Impact Stations (Mid-Ebb Tide)

Date	B1	B2	В3	B4	CR1	CR2	F1A	H1	S1	S2A	S3	M1
2-10-2019												
4-10-2019												
8-10-2019												
10-10-2019												
12-10-2019												
14-10-2019												
16-10-2019												
18-10-2019												
22-10-2019												
24-10-2019												
26-10-2019												
28-10-2019												
30-10-2019												
No. of Turbidity Exceedances	0	0	0	0	0	0	0	0	0	0	1	0

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Action Level recorded at monitoring station located upstream/unrelated
stream (neither upstream nor downstream, far away) of the Project based on dominant
tidal flow
Exceedance of Limit Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Limit Level recorded at monitoring station located upstream/unrelated
stream of the Project based on dominant tidal flow
Upstream/unrelated stream station with respect to IWMF Project during the respective
tide based on dominant tidal flow
Downstream station with respect to IWMF Project during the respective tide based on
dominant tidal flow/station within the Project site
NA for measurement
Cancelled due to incident or adverse weather

Table 8.6 Summary of Turbidity Compliance Status at Impact Stations (Mid-Flood Tide)

Date	B1	B2	В3	B4	CR1	CR2	F1A	H1	S1	S2A	S3	M1
2-10-2019												
4-10-2019												
8-10-2019												
10-10-2019												
12-10-2019												
14-10-2019												
16-10-2019												
18-10-2019												
22-10-2019												
24-10-2019												
26-10-2019												
28-10-2019												
30-10-2019												
No. of Turbidity Exceedances	0	0	0	0	0	0	0	0	0	0	1	0

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Action Level recorded at monitoring station located upstream/unrelated
stream (neither upstream nor downstream, far away) of the Project based on dominant
tidal flow
Exceedance of Limit Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Limit Level recorded at monitoring station located upstream/unrelated
stream of the Project based on dominant tidal flow
Upstream/unrelated stream station with respect to IWMF Project during the respective
tide based on dominant tidal flow
Downstream station with respect to IWMF Project during the respective tide based on
dominant tidal flow/station within the Project site
NA for measurement
Cancelled due to incident or adverse weather

- 8.3 Thirty-four (34) of the General & Regular DCM water quality monitoring results of suspended solids (SS) obtained during the reporting period had exceeded Action Level. Thirty-five (35) of monitoring results had exceeded the relevant Limit Level of suspended solids (SS) during the reporting period as summarized in **Table 8.1** & **8.2**, where findings from investigation carried out immediately for each of the exceedance cases during the reporting period.
- 8.4 Three hundred & five (305) of the General & Regular DCM water quality monitoring results of dissolved oxygen (DO) obtained during the reporting period had exceeded Action Level. None (0) of monitoring results had exceeded the relevant Limit Level of dissolved oxygen (DO) during the reporting period as summarized in **Table 8.3** & **8.4**, where findings from investigation carried out immediately for each of the exceedance cases during the reporting period.
- 8.5 Two (2) of the General & Regular DCM water quality monitoring results of turbidity obtained during the reporting period had exceeded Action Level. None (0) of monitoring results had exceeded the relevant Limit Level of turbidity during the reporting period as summarized in **Table 8.5** & **8.6**, where findings from investigation carried out immediately for each of the exceedance cases during the reporting period.
- 8.6 No project-related Action Level & Limit Level exceedance was recorded from 25 September 2019 to 31 October 2019 as shown in **Appendix N**, except for the SS exceedance on 2 October 2019, where the relevant site records are under review and the corresponding incident report would be marked as interim incident report. The complete incident report on 2 October 2019 will be presented in the next monthly report. However, environmental deficiencies of the Contactor on the implementation of silt curtain deployment system were spotted.
- 8.7 The Contractor has been reminded that all measures recommended in the deposited Silt Curtain Deployment Plan shall be fully and properly implemented for the Project as per Clause 2.6A of the FEP.
- 8.8 No notification of summons and prosecution was received in the reporting period.
- 8.9 Statistics on complaints, notifications of summons and successful prosecutions are summarized in **Appendix O**.

9. EM&A SITE INSPECTION

9.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, site inspections were carried out on 2, 8, 15, 23, 29 October 2019 at the site portions list in **Table 9.1** below.

Table 9.1 Site Inspection Record

Date	Inspected Site Portion	Time
2 October 2019	Portion 1, 1A & 1B (near SKC)	10:30 – 11:25 am
8 October 2019	Portion 1, 1A & 1B (near SKC)	10:50 – 11:45 am
15 October 2019	Portion 1, 1A & 1B (near SKC)	10:40 – 11:30 am
23 October 2019	Portion 1, 1A & 1B (near SKC)	10:00 – 11:15 am
29 October 2019	Portion 1, 1A & 1B (near SKC)	10:00 – 11:15 am

- 9.2 One joint site inspection with IEC was carried out on 15 October 2019.
- 9.3 Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections and during the reporting period are summarized in **Table 9.2**.

Table 9.2 Site Observations

Date	Environmental Observations	Follow-up Status
2 October 2019 (Site inspection)	 Observation(s) and Recommendation(s) On ESC62, construction materials or samples should not be put on the chemical waste cabinet. On barge 金盈 8, some sediments was observed around the edge of the cage of silt curtain. It should be cleaned regularly to prevent falling into the sea. 	 Construction sample placed on top of the chemical waste container has been removed. Sediment accumulated on the edge of the silt curtain has been cleaned.
8 October 2019 (Site inspection)	 Observation(s) and Recommendation(s) Oil stain was observed at some area on the deck surface of SHB305. Some wind blow rubbish and used welding rods were observed on deck surface. Good house keeping should be maintained on SHB305. Oily water on drip trays at SHB305 and GD851 nearly overflow. 	 Oil stain has been cleaned on SHB305. Rubbish has been cleaned on SHB305. Oily water inside drip tray on SHB305 and GD851 has been cleaned.
15 October 2019 (Site inspection)	Observation(s) and Recommendation(s) 1. Due to wavy condition of the sea. No on-board inspection can be performed. No abnormal condition was observed on the sea.	Nil.
23 October 2019 (Site inspection)	Observation(s) and Recommendation(s) 1. On SHB305, stagnant water accumulated on tarpaulin should be	 Stagnant water has been cleared. Skirting is added to

Date	Environmental Observations	Follow-up Status
	cleared.	stop water going back
	2. On 永樂., small amount of muddy	down from the casing
	water leakage was observed during	and the return water
	DCM Coring, The activity was	trapped inside the
	stopped to prevent continuous leakage.	water tray will be
	Mitigation measure should be	pumped to the
	provided to avoid this leakage being	collection tank.
	happened again.	3. The lube oil bottle has
	3. On 永樂., a lube oil bottle was put on	been removed off site.
	ground without drip tray.	4. A new chemical waste
	4. On 永樂., the chemical waste storage	storage cabinet is
	cabinet does not meet the requirement	provided.
	stipulated in the "Code of Practice	
	on the Packaging labelling and storage	
	of Chemical Wastes" which was not in	
	use and empty.	
	Observation(s) and Recommendation(s)	1. On 港 龍 108,
	1. On 港龍 108, some sediment was	sediment accumulated
	found on the edge of the barge.	on the edge of the
	Sediment should be cleaned up to	barge has been
	prevent falling into the sea.	cleaned.
29 October 2019	2. On 港龍 and 金盈 8, lube oil bottles	2. On 港龍 and 金盈 8,
(Site inspection)	were put on ground without drip tray.	lube oil bottles have
(Site inspection)	3. On SHB305, general refuse was not	been removed off site.
	well packed.	3. On SHB 305, general
	4. On ESC62, a small part of silt curtain	refuse has been
	near the boarding area was floated up.	discarded.
		4. Silt curtain on ESC62
		has been repaired.

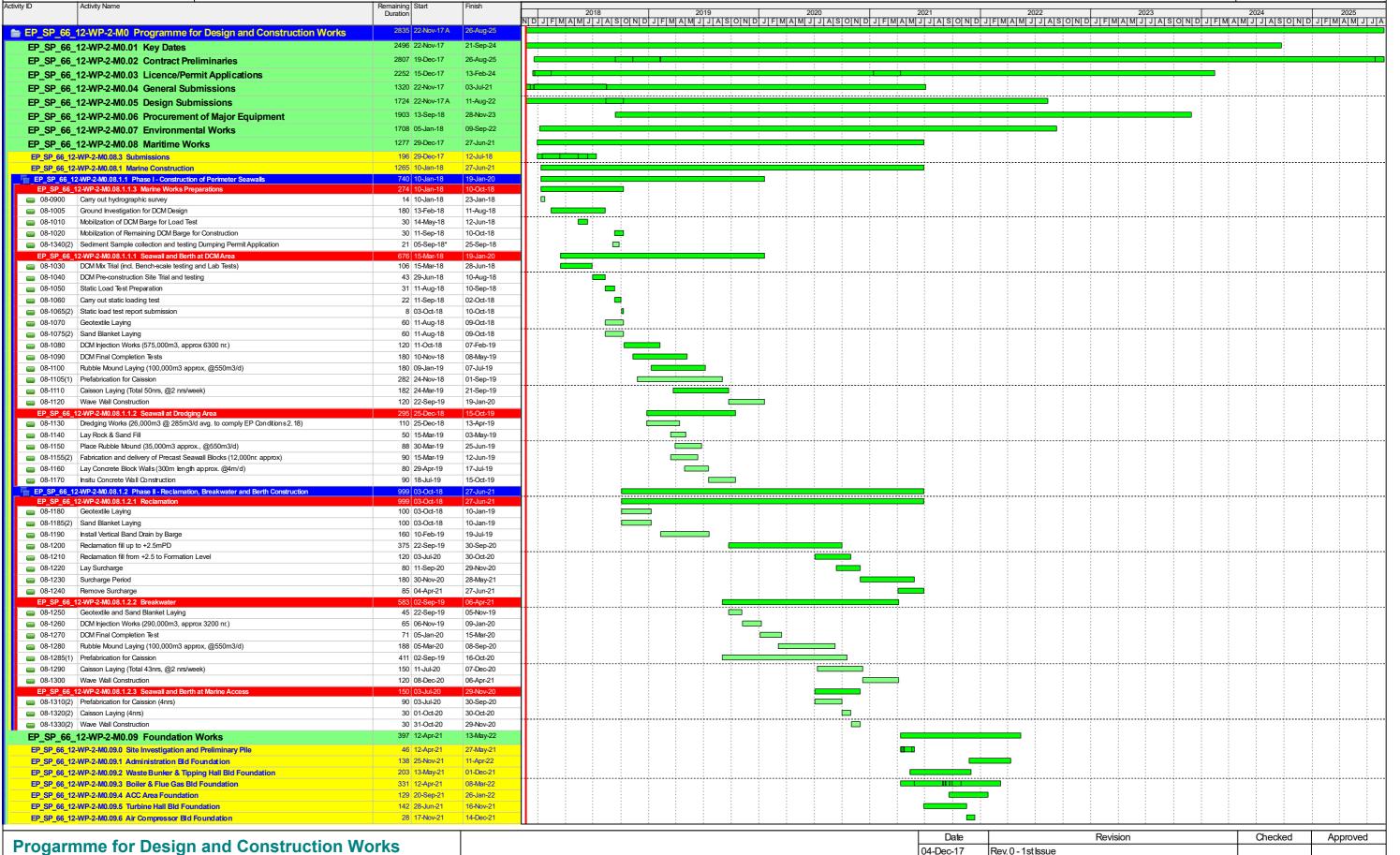
- 9.4 The Contractor had rectified all the observations identified during environmental site inspections in the reporting period. The Contractor has been reminded to suspend the related works immediately if silt curtain is found any damage in the future, until fixing of damaged silt curtain is completed.
- 9.5 According to the EIA Study Report, Environmental Permit, contract documents and Updated EM&A Manual, the mitigation measures detailed in the documents are implemented as much as practical during the reporting period. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in **Appendix B**.

10. FUTURE KEY ISSUES

- 10.1 Works to be undertaken in the next reporting month are:
 - DCM Installation Works;
 - Coring of DCM samples;
 - Cone Penetration Test;
 - Dredging Works and Sediment Disposal;
 - Rock Filling of Foundation;
 - Leveling Works for the Foundation of Seawall and Berth Area;
 - Caisson Laying;
 - Rubble Mound Laying;
 - Sand Blanket and Geotextile Laying.
- 10.2 Potential environmental impacts arising from the above construction activities are mainly associated with water quality, construction noise, waste management and ecology.
- 10.3 The key environmental mitigation measures for the Project in the coming reporting period expected to be associated with the construction activities include:
 - Reduction of noise from equipment and machinery on-site;
 - Installation of silt curtains for DCM installation, sand blanket laying works and dredging works;
 - Sorting, recycling, storage and disposal of general refuse and construction waste;
 - Management of chemicals and avoidance of oil spillage on-site, especially under heavy rains and adverse weather; and
 - Implementation of cluster MMEZ and inspection of enclosed environment within silt curtains as per DMPFP;
 - Regulation on rate and means for dredging works as stipulated in FEP Clause 2.17
 2.21 or the approved Supporting Document for Reviewing Dredging Rate and Filling Rate, whichever is applicable;
 - Daily site audit and monitoring by ET during dredging work as stipulated in FEP Clause 2.21A;
 - Storage, handling and disposal of dredged materials according to Dumping At Sea Ordinance (DASO);
 - Confirmation of the absence of silt content in the rock filling material and the filling work is adequately conducted;
 - Installation process of floating silt curtain according to approved Silt Curtain Deployment Plan
- 10.4 The tentative schedule of regular construction noise, water quality and ecology monitoring in the next reporting period is presented in **Appendix P**. The regular construction noise,

water quality and ecology monitoring will be conducted at the same monitoring locations in the next reporting period.

11. CONCLUSION AND RECOMMENDATIONS

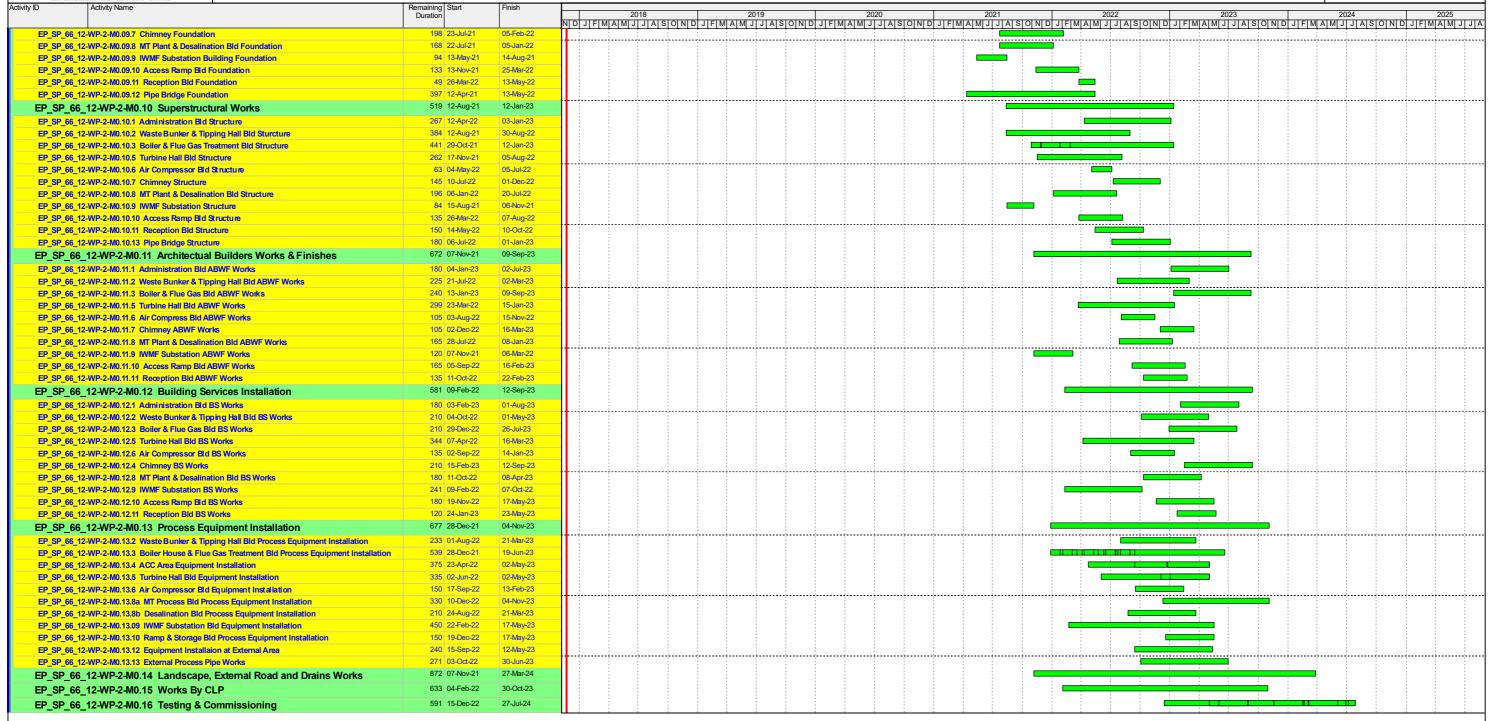

- 11.1 This 16th monthly Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 October to 31 October 2019 and exceedance investigation findings for 25 & 27 September 2019, in accordance with the Updated EM&A Manual and the requirement under EP-429/2012/A and FEP-01/429/2012/A.
- 11.2 Construction noise, water quality, construction waste, marine mammal and WBSE monitoring were carried out in the reporting period. No project-related exceedance of the Action and Limit Level was recorded during the reporting period and 25, 27 September 2019 except for the SS exceedance on 2 October 2019, where the relevant site records are under review and the corresponding incident report would be marked as interim incident report. The complete incident report on 2 October 2019 will be presented in the next monthly report. However, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted.
- 11.3 Weekly environmental site inspections were conducted during the reporting period. Environmental deficiencies were observed during site inspection and were rectified.
- 11.4 According to the environmental site inspections performed in the reporting month, the Contractor was reminded to pay attention on on-site housekeeping, and the proper storage of the chemicals and construction waste.
- 11.5 According to the field observation by MMO during the reporting period, temporary silt plume and foam at close proximity of the outside of silt curtains, dumping sand material above water surface instead of bottom of the sea were observed. The Contractor has ceased the malpractice and no silt plume was observed at the working area within 30 minutes upon discovery. The Contractor is reminded to use the bottom dumping method as specified in the Silt Curtain Deployment Plan.
- 11.6 Regarding to the deployment of silt curtains as a principal water quality impact mitigation measures on various marine works, the Contractor has been reminded to follow strictly to the design and checking procedure as specified in the Silt Curtain Deployment Plan. As the scale of DCM works will be stepped up in the coming months, the Contractor has been reminded to pay extra attention on the status of deployed silt curtain. The Contractor is reminded that all measures recommended in the deposited silt curtain deployment plan shall be fully and properly implemented for the Project as per EP condition 2.6 of the FEP.
- 11.7 As dredging works was conducted in the reporting month, the Contractor had been reminded to follow strictly to the design and checking procedure as specified in the Silt Curtain Deployment Plan for the dredging works. The Contractor had been reminded to follow the regulation on rate and means for dredging works as stipulated in FEP Clause 2.17 2.21 or the approved Supporting Document for Reviewing Dredging Rate and Filling Rate, whichever is applicable. The Contractor is reminded to follow Dumping At Sea Ordinance (DASO) for the storage, handling and disposal of dredged materials.
- 11.8 No environmental complaint was received in the reporting period.
- 11.9 No notification of summon or prosecution was received since commencement of the Contract.
- 11.10 The ET will keep track of the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Contract No. EP/SP/66 Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix A	Master Programme	

Contract No. EP/SP/66/12
Integrated Waste Management Facilities, Phase 1

Summary Progarmme
Page 1 of 2

 04-Dec-17
 Rev. 0 - 1st Issue


 16-Jul-18
 Rev. 1 - Revised to SO's comments

 03-Sep-18
 Rev. 2 - Revised to SO's comments

Contract No. EP/SP/66/12
Integrated Waste Management Facilities, Phase 1

Progarmme for Design and Construction Works
Summary Progarmme

Date	Revision	Checked	Approved
04-Dec-17	Rev. 0 - 1st Issue		
16-Jul-18	Rev. 1 - Revised to SO's comments		
03-Sep-18	Rev. 2 - Revised to SO's comments		

Contract No. EP/SP/66/12	
Integrated Waste Management Facilities, Phase	1

Keppel Seghers – Zhen Hua Joint Venture

Appendix B Summary of Implementation Status of Environmental Mitigation

Appendix B

Table B.1 Implementation Schedule for Air Quality Measures for the IWMF at the artificial island near SKC

Table B.1	Implementation Schedule for Air Quality M	casules for the	IVIVII at the artificial					Relevant
	Environmental Protection Measures /	Location /	Implementation	ımp	lementa	ation St	ages*	Legislation Implementati
EIA Ref	Mitigation Measures	Timing	Agent	Des	С	0	Dec	and on Status and Remarks
S3b.8.1	Air Pollution Control (Construction Dust) Regulation & Good Site Practices Use of regular watering, with complete coverage, to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site.	During the construction period	Contractor					Air Pollution Control (Construction Dust) Regulation

				Imp	lement	ation S	tages*	Relevant	Implementati
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	on Status and Remarks
	 Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading points, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. Imposition of speed controls for vehicles on unpaved site roads. Ten kilometers per hour is the recommended limit. Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 								
S3b.6.3	Odour Removal by Deodorizers Deodorizers with 95% odour removal efficiency would be installed for the air ventilated from the mechanical treatment plant before discharge to the atmosphere	Waste reception halls, the waste storage area,	IWMF Operator	\		√		EIAO-TM	N/A
S3b.8.2	Air Pollution Control and Stack Monitoring Air pollution control and stack monitoring system will be installed for the IWMF to ensure that the	IWMF stack emissions / During design &	IWMF Operator	√		√		EIAO-TM, Supporting Document for Application for	N/A

	Environmental Protection Measures / Mitigation Measures			Imp	lementa	ation S	tages*	Relevant	Implementati on Status and Remarks
EIA Ref		Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	emissions from the IWMF stack will meet the proposed target emission limits. • Voluntary Enhancement Measures in Flue Gas Cleaning and Emission Monitoring: 1. Two-stage bag filter system with reagent recirculation; 2. In addition to SCR, provide SNCR for removal of NO _x ; tighten emission limit for half-hourly and daily NO _x to 160 mg/m³ and 80 mg/m₃ respectively; 3. Well-mixed feed waste: to minimize the fluctuation of pollutant loading on the flue gas treatment system; 4. Two more AQMSs would be set up at South Lantau and Shek Kwu Chau respectively; 5. Limit levels will be set under the IWMF DBO contract to require that waste feed shall cease if any of the air pollutant has exceeded 95% of the emission concentration limit as stipulated in the Special Process license; and 6. Each incineration chamber shall be fitted with auxiliary burners to ensure complete burn out of the combustion gases.	operation phase						Variation of Environmental Permit (EP- 429/2012)	
-	Treated Fly Ash and Air Pollution Contro Residues:	IWMF stack emissions /	IWMF Operator	✓		✓		Supporting Document for	N/A

	Environmental Protection Measures / Mitigation Measures			Implementation Stages*				Relevant	Implementati
EIA Ref		Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	on Status and Remarks
	 During testing and commissioning, the Contractor shall sample and test every container of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit. If a test result confirms that any one of the samples does not conform to the limits and the criteria, the Contractor shall be required to sample and test every container of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria for the next six months. During the first six months of operation, if the requirements in (a) could be fully conformed with, the Contractor shall sample and test every shipload of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit. The Contractor shall take two samples from each shipload for testing and the Contractor shall not dispose of any of that shipload of treated fly ash and air pollution control residues until the test 	During design & operation phase						Application for Variation of Environmental Permit (EP-429/2012)	

	Environmental Protection Measures / Mitigation Measures		Implementation Agent	Implementation Stages				Relevant	Implementati
EIA Ref		Location / Timing		Des	С	0	Dec	Legislation and Guidelines	on Status and Remarks
	results confirm that the two samples								
	conform to the limits and the criteria. If								
	a test result confirms that any one of								
	the two samples does not conform to								
	the limits and the criteria, the								
	Contractor shall be required to sample								
	and test every shipload of treated fly								
	ash and air pollution control residues								
	for conformance to the Incineration								
	Residue Pollution Control Limits and								
	leachability criteria for the next six								
	months. The Contractor shall make								
	due allowance in the Design and the								
	Operation for the time to sample and								
	test treated fly ash and air pollution								
	control residues before disposal.								
	 Provided that there is no non- 								
	conformance to the Incineration								
	Residue Pollution Control Limits and								
	leachability criteria shown in Table 2								
	of the Environmental Permit								
	throughout a continuous sixmonth								
	period in the Operation Period, the								
	testing frequency shall be reduced to								
	monthly interval. Two samples from								
	one shipload of treated fly ash and air								
	pollution control residues shall be								
	collected and tested for conformance								
	to the Incineration Residue Pollution								
	Control Limits and leachability criteria.								
	The Contractor shall not dispose of								
	any of the treated fly ash and air								
	pollution control residues in the								

				Imp	lement	ation S	tages*	Relevant Legislation and Guidelines	Implementati on Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec		
	shipload which the samples are taken until the test results confirm that the samples conform to the limits and the criteria. If the test result confirm that any one of the samples does not conform to the limits and the criteria, the Contractor shall be required to sample and test every shipload of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit for the next six months.								
-	During testing and commissioning, the Contractor shall sample and test every container of bottom ash for conformance to the leachability criteria shown in Table 2 of the Environmental Permit. If a test result confirms that any one of the samples does not conform to the criteria, the Contractor shall be required to sample and test every container of bottom ash for conformance to the leachability criteria for the next six months. During the first six months of operation, if the requirements in (d) could be fully conformed with, the Contractor shall sample and test one shipload of bottom ash each month	IWMF stack emissions / During design & operation phase	IWMF Operator	V		✓		Supporting Document for Application for Variation of Environmental Permit (EP- 429/2012)	N/A

	Environmental Protection Measures / Mitigation Measures			Imp	lement	ation S	tages*	Relevant	Implementati on Status and Remarks
EIA Ref		Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	for conformance to the leachability								
	criteria shown in Table 2 of the								
	Environmental Permit. The								
	Contractor shall take two samples								
	from the shipload for testing and the								
	Contractor shall not dispose of any of								
	that shipload of bottom ash until the								
	test results confirm that the two								
	samples conform to the criteria. If a								
	test result confirms that any one of								
	the two samples does not conform to								
	the criteria, the Contractor shall be								
	required to sample and test each								
	shipload of bottom ash for								
	conformance to the leachability								
	criteria for the next six months. The								
	Contractor shall make due allowance								
	in the Design and the Operation for								
	the time to sample and test bottom								
	ash before disposal.								
	 Provided that there is no non- 								
	conformance to the leachability								
	criteria shown in Table 2 of the								
	Environmental Permit throughout a								
	continuous six month period in the								
	Operation Period, the Contractor								
	shall be allowed to take two samples								
	from any one shipload of bottom ash								
	once every six months for								
	conformance to the leachability								
	criteria. The Contractor shall not								
	dispose of any of the bottom ash in								
	the shipload which the samples are								

	Environmental Protection Measures /			lmp	lement	ation S	tages*	Relevant	Implementati on Status and Remarks
EIA Ref	Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	taken until the test results confirm								
	that the samples conform to the								
	criteria. If the test result confirm that								
	any one of the samples does not								
	conform to the criteria, the Contractor								
	shall be required to sample and test								
	one shipload of bottom ash each								
	month for conformance to the								
	leachability criteria shown in Table 2								
	of the Environmental Permit for the								
	next six months as stipulated above.								

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Integrated Waste Management Facilities, Phase 1

Table B.2 Implementation Schedule for Noise Impact Measures for the IWMF at the artificial island near SKC

	Environmental Protection Measures /			Impl	ementation	Stages*	Relevant	Implementatio
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	СО	Dec	Legislation and Guidelines	n Status and Remarks
S4b.8	Good site practices to limit noise emissions at source and use of quiet plant and working methods, whenever practicable.	Construction	EPD and its contractors		✓		EIAO-TM	Implemented
S4b.6 & S4b.8	All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) Stack of the incinerator (ii) Ventilation systems within the IWMF Enclosure and discharge silencer or other acoustic treatment equipment should be installed in the air-cooled chillers Other than provision of silencer or other acoustic treatment equipment for the stack of the incinerator and ventilation system, the detailed design should incorporate the following good practice in order to minimize the nuisance on the neighboring NSRs. (i) The exhaust of the ventilation system and any opening of the building should be located facing away from any NSRs; and (ii) Louver or other acoustic treatment equipment could also be applied to the exhaust of the ventilation system.	Within IWMF area / Construction Period	EPD and its contractors	V			EIAO-TM	N/A

Integrated Waste Management Facilities, Phase 1

-	Voluntary Enhancement Measure	IWMF site	Design team,	✓	✓	Supporting	Implemented
	Provision of air-conditioner and double glazed windows to nearby NSR at Shek Kwu Chau (i.e. SARDA) as precautionary measures.		contractor, IWMF operator			Document for Application for Variation of Environmental Permit (EP- 429/2012)	

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table B.3 Implementation Schedule for Water Quality Measures for the Artificial Island near SKC

	Location / Timing		Imple	menta	tion S	tages*	Relevant	Implementation	
Environmental Protection Measures / Mitigation Measures		Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks	
Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to	Work site / During the construction period	Contractor		√			EIAO-TM; ProPECC PN 1/94; WPCO	N/A	
minimise surface runoff and the chance of erosion. These practices include the following items:									
At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction.									
Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary.									
Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractor									
	Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Measures / Mitigation Measures Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Environmental Protection Measures Mitigation Measures Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct offsite water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt raps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Environmental Protection Measures / Mitigation Measures / During depth / During the construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Environmental Protection Measures	Measures / Mitigation Measures Timing Timing Measures / Mitigation Measures Timing Timing Measures / Mitigation Measures Timing Measures / Mitigation Measures Timing Timing Measures / Mitigation Measures Timing Measures / Mitigation Measures Work site / During the construction Site Drainage' should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Environmental Protection Measures / Mitigation Measures Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 'Construction Site Drainage' should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	

	Environmental Protection Measures / Mitigation Measures			Imple	mentat	ion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref		Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	piles must be discharged into silt removal facilities.								
	 Measures should be taken to minimize the ingress of site runoff and drainage into excavations. Drainage water pumped out from excavations should be discharged into storm drains via silt removal facilities. 								
	 During rainstorms, exposed slope/soil surfaces should be covered by a tarpaulin or other means, as far as practicable. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC PN 1/94. 								
	Exposed soil areas should be minimized to reduce potential for increased siltation and contamination of runoff.								
	Earthwork final surfaces should be well compacted and subsequent permanent work or surface protection should be immediately performed.								
	Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms.								
S5b.8.1.2	General Construction Activities Construction solid waste should be collected, handled and disposed of properly to avoid entering to the nearby watercourses and public drainage	Work site / During the constr uction period	Contractor		✓			EIAO-TM; ProPECC PN 1/94; WPCO	Reminders provided to the Contractor

				Imple	menta	tion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	system. Rubbish and litter from construction sites should also be collected to prevent spreading of rubbish and litter from the site area.								
S5b.8.1.3	There is a need to apply to EPD for a discharge license for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge license. All the run-off and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. The beneficial uses of the treated effluent for other on-site activities such as dust suppression and general cleaning etc., can minimize water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO license which is under the ambit of regional office of EPD.	Work site / During the construction period	Contractor		•			EIAO-TM; ProPECC PN 1/94; WPCO	Discharge License was issued on 22/08/2019.
S5b.8.1.4	Accidental Spillage Contractor must register as a chemical waste producer if chemical wastes would be produced from construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	Work site / During the construction period	Contractor		V			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Implemented

				Imple	menta	tion S	tages*	* Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
S5b.8.1.5	Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas which appropriately equipped to control these discharges.	Work site / During the construction period	Contractor		✓			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Deficiency of Mitigation Measures but rectified by the Contractor
S5b.8.1.6	Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas should be sited on sealed areas in order to prevent spillage of fuels and solvents to the nearby watercourses. All waste oils and fuels should be collected in designated tanks prior to disposal.	Work site / During the construction period	Contractor		✓			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Deficiency of Mitigation Measures but rectified by the Contractor
S5b.8.1.7	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows:	Work site / During the construction period	Contractor		✓			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Deficiency of Mitigation Measures but rectified by the Contractor
	 Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area should be selected at a safe location on site and adequate space should be allocated to the 								

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	storage area.								
S5b.8.1.8	Sewage Effluent Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor would be responsible.	Work site / During the construction period	Contractor		✓			EIAO-TM; ProPECC PN 1/94; WPCO	N/A
S5b.8.1.9	 Reclamation and Construction of Breakwaters The proposed dredging and reclamation should be commenced in phases. The breakwaters and seawalls should be constructed and the reclamation should be started within the enclosed breakwaters after the completion of the breakwater. Silt curtain should be applied around caissons / blockwork during the filling of the cell to prevent the loss of fine in the filling material. The maximum production rate for dredging for the anti-scouring protection layer shall not exceed the permitted maximum daily dredging rate and carried out within its respective distance from the nearest nontranslocatable coral community by the dredging contractor as specified in S.2.18 of the Further Environmental Permit (no.:FEP-01/429/2012/A). It is recommended to employ closed grab with small capacity of 2 m³ to control the dredging rate. Any gap that may need to be provided for 	Work site / During the marine construction period	Contractor					EIAO-TM; WPCO, Supporting Document for Application for Variation of Environmental Permit (EP- 429/2012) Further Environmental Permit No. FEP- 01/429/2012/A	Deficiency of Mitigation Measures but rectified by the Contractor.
	dredging rate and carried out within its respective distance from the nearest non-translocatable coral community by the dredging contractor as specified in S.2.18 of the Further Environmental Permit (no.:FEP-01/429/2012/A). It is recommended to employ closed grab with small capacity of 2 m³ to control the dredging rate.								

				Imple	mentat	tion S	tages*		Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	sediment plume dispersion.								
	 The silt curtain system at marine access opening should be closed as soon as the barges passes through the marine access opening in order to minimize the period of curtain opening. Filling should only be carried out behind the silt curtain when the silt curtain is completely closed. 								
	 To enhance the effectiveness of the silt curtain at the marine access, the northern breakwater would be built before the commencement of the reclamation to reduce the current velocity towards the marine access opening. 								
	The silt curtain system at marine access opening should be regularly checked and maintained to ensure proper functioning.								
	Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25% which is in line with the CEDD's General Specification;								
	 The filling for reclamation should be carried out behind the seawall. The filling material should only consist of public fill, rock and sand. The filling composition and filling rates at each filling area should follow those delineated in Table 1 of the FEP- 01/429/2012/. The filling above high watermark is not restricted; 								
	No dredging should be carried out within 16m to the nearest non-translocatable coral community;								

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 Daily site audit including full-time on-site monitoring by the ET is recommended during the dredging for anti-scouring protection layer for checking the compliance with the permitted no. of grab; 								
	 Closed grab dredger should be used to minimize the loss of sediment during the raising of the loaded grabs through the water column; 								
	Frame-type silt curtains should be deployed around the dredging operations;								
	 Floating-type silt curtains should be used to surround the circular cell during the sheetpiling work; 								
	 The descent speed of grabs should be controlled to minimize the seabed impact speed; 								
	 Barges should be loaded carefully to avoid splashing of material; 								
	 All barges used for the transport of dredged materials should be fitted with tight bottom seals in order to prevent leakage of material during loading and transport; 								
	 No concurrence works between laying of submarine cables and dredging/reclamation works within the same location is allowed. For works close to each other, the construction program should be arranged so that the dredging/reclamation works within area bounded by the breakwaters and the laying of cables would not operate within a 								

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	distance of 80m from each other to avoid any accumulative impact on the environment (in case if such tight schedule is necessary).								
	 All barges should be filled to a level which ensures that material does not spill over during loading and transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action. 								
	No DCM works should be carried out within 100m to the nearest non-translocatable coral colony / colonies.								
	Silt curtains should be employed to enclose DCM field trial and any full scale DCM work to minimize the potential impacts on water aspect.								
	 A sand blanket is to be placed on top of the marine deposit using tremie pipes prior to the DCM ground treatment to avoid seabed sediment disturbance. 								
S5b.8.2.3	Operational Phase Discharges A pipeline drainage system will serve the development area collecting surface runoff from paved areas, roof, etc. Sustainable drainage principle would be adopted in the drainage system design to minimize peak surface runoff, maximize permeable surface and maximize beneficial use of rainwater.	Within IWMF site / During the operational phase	IWMF Operator	√		√		WPCO	N/A
S5b.8.2.4	Oil interceptors should be provided in the drainage system of any potentially contaminated areas (such as truck parking area and maintenance workshop) and	Within IWMF site / During the operational	IWMF Operator	✓		✓		WPCO; WDO	N/A

				Imple	mentat	ion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	regularly cleaned to prevent the release of oil products into the storm water drainage system in case of accidental spillages. Accidental spillage should be cleaned up as soon as practicable and all waste oils and fuels should be collected and handled in compliance with the Waste Disposal Ordinance.	phase							
S5b.8.2.5	Refuse Entrapment Collection and removal of floating refuse should be performed at regular intervals for keeping the water within the Project site boundary and the neighboring water free from rubbish.	Within the Project site / During the operational phase	IWMF Operator			√		WPCO	N/A
S5b.8.2.6	Transportation of bottom ash, fly ash and APC residues to WENT Landfill for disposal Covered container should be used in the shipping of the incineration waste to limit the contact between the incineration waste and the marine water. A comprehensive emergency response plan for any accidental spillage should be submitted by the operation contractor to the EPD for agreement before the operation of the facilities. Salvage and cleanup action to recover the spilled incineration waste containers following the spillage should be carried out according to the emergency response plan to mitigate the environmental impact in case of spillage.	Transportat ion of Incineration Ash / During the operational phase	IWMF Operator			~			N/A

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Integrated Waste Management Facilities, Phase 1

Table B.4 Implementation Schedule for Waste Management Measures for the IWMF at the artificial island near SKC

				Imple	ementa	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
6b.5.1.2	Adverse environmental impacts in relation to waste management are not expected, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities would include: Obtain relevant waste disposal permits from appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354) and subsidiary Regulations and the Land (Miscellaneous Provisions) Ordinance (Cap. 28); Provide staff training for proper waste management and chemical handling procedures; Provide sufficient waste disposal points and regular waste collection; Provide appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; and Carry out regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; Separate chemical wastes for special handling and disposed of to licensed facility for treatment; and Employ licensed waste collector to collect waste.	Work Site/ During Construction Period	Contractor		✓			WDO; LDO; ETWB TCW No. 19/2005; EIAO-TM	Deficiency of Mitigation Measures but rectified by the Contractor.

				Imple	ementa	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
6b.5.1.3	Waste Reduction Measures Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: Design foundation works that could minimize the amount of excavated material to be generated. Provide training to workers on the importance of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycling; Sort out demolition debris and excavated materials from demolition works to recover reusable/recyclable portions (i.e. soil, broken concrete, metal etc.); Segregate and store different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Encourage the collection of aluminum cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force; Proper storage and site practices to minimize the potential for damage or contamination of construction materials; and	Work Site/ During Design & Construction Period	Contractor						Implemented; N/A for foundation and demolition items

					Imple	mentati	on Stages	* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent		Des	С	O Dec	Legislation and Guidelines	Status and Remarks
	 Plan and stock construction materials carefully to minimize amount of waste to be generated and to avoid unnecessary generation of waste. 								
6b.5.1.7	Dredged Sediment – Application of Dumping Permit The project proponent should agree in advance with MFC of CEDD on the site allocation. The project proponent or contractor for the dredging works shall then apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. The project proponent or contractor should also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged sediment prior to the commencement of the dredging works.	Seawall and Reclamation site / Construction Period	EPD and contractor	its				DASO ETWB TCW 34/2002	Implemented, marine sediment samples have been collected.
6b.5.1.8	Dredged Sediment – Sediment Quality Report The project proponent or contractor will need to satisfy the appropriate authorities that the quality of the marine sediment to be dredged has been identified according to the requirements of ETWB TCW 34/2002. This should be completed well before the dredging works and would include at least the submission of a formal Sediment Quality Report under Tier I of ETWB TCW No. 34/2002 to DEP for approval. Subject to advice from DEP, it is possible that further marine SI in accordance with ETWB TCW 34/2002	Seawall and Reclamation site / Construction Period	EPD and contractor	its	✓			DASO ETWB TCW 34/2002	Undergoing

				Imple	mentat	ion St	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	might be necessary for the application of dumping permit under DASO. In such case, a sediment sampling and testing proposal shall be submitted to and approved by DEP before the additional marine SI works.								
6b.5.1.9	Dredged Sediment – Sediment Transportation The barge transporting the sediments to the designated disposal sites should be equipped with tight fitting seals to prevent leakage and should not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic selfmonitoring devices as specified by the DEP.	Seawall and Reclamation site / Construction Period	EPD and its contractor		✓			DASO ETWB TCW 34/2002	N/A
6b.5.1.10	Construction and Demolition Materials In order to minimize the impact resulting from collection and transportation of C&D materials for off-site disposal, the excavated material arising from site formation and foundation works should be reused on-site as backfilling material and for landscaping works as far as practicable. Other mitigation requirements are listed below: • A Waste Management Plan (WMP), which becomes part of the Environmental Management Plan (EMP), should be prepared in accordance with ETWB TCW No.19/2005;	Work Site/ During Design & Construction Period	Contractor	•				ETWB TCW No. 19/2005	Implemented

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be adopted for easy tracking; and 								
	 In order to monitor the disposal of C&D materials at public filling facilities and landfills and to control fly-tipping, a trip- ticket system should be adopted (refer to ETWB TCW No. 31/2004). 								
6b.5.1.11 - 6b.5.1.12	The Contactor should prepare and implement an EMP in accordance with ETWB TCW No.19/2005, which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from construction activities. Such a management plan should incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP should be submitted to the Engineer for approval. The Contractor All surplus C&D materials arising from or in connection with construction works should become the property of the Contractor when it is removed unless otherwise stated. The Contractor would be responsible for devising a system to work for on-site sorting of C&D materials and promptly removing all sorted and process materials arising from the construction activities to minimize temporary stockpiling on-site. The system should be	Work Site/ During Design & Construction Period	Contractor		*			ETWB TCW No. 19/2005	Implemented

				Imple	mentat	ion S	tages*		Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	included in the EMP identifying the source of generation, estimated quantity, arrangement for on-site sorting, collection, temporary storage areas and frequency of collection by recycling Contractors or frequency of removal off-site.								
6b.5.1.13	Chemical Wastes Should chemical wastes be produced at the construction site, the Contractor would be required to register with EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible corrosive). The Contractor should employ a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work Site/ During Construction Period	Contractor		*			Waste Disposal (Chemical Waste) (General) Regulation	Implemented
6b.5.1.14	General refuse should be stored in enclosed bins or compaction units separate from C&D materials. A licensed waste collector should be employed by the Contractor to remove general refuse from the site, separately from C&D materials. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	Work Site/ During Construction Period	Contractor		✓				Reminders provided to the Contractor

				Imple	mentat	ion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
6b.5.1.16 - 6b.5.1.33	Biogas Generation The Contractor shall review the data and analysis results, and the data from further Site Investigation, if any. Subject to the review findings, the following gas protection measures may be considered if necessary: - gas monitoring after reclamation; - passive ventilation; - gas impermeable membrane; - ventilation with "at risk" rooms;	Reclamation site (if dredging at the reclamation site is not required) / Design & Construction Period	Designer and/or contractor	~	Y			EPD/TR8/97	N/A
6b.5.2.1	 services; precautions during construction works; precautions prior to entry of belowground services Good Site Practices It is recommended that the following good operational practices should be adopted to minimise waste management impacts: Obtain the necessary waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354) and Waste Disposal (Chemical 	IWMF Site/During Operation Period	IWMF Operator			✓		Waste Disposal Ordinance (Cap.354); Waste Disposal (Chemical Waste) (General) Regulation; ETWB TCW No. 1/2004	N/A

				Imple	menta	tion S	tages*		Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
•	Waste) (General) Regulation; Nomination of an approved person to be responsible for good site practice, arrangements for collection and effective disposal to an appropriate facility of all wastes generated at the								
	site;								
•	Use of a waste haulier licensed to								
	collect specific category of waste;								
•	A trip-ticket system should be included								
	as one of the contractual requirements								
	and implemented by the Environmental Team to monitor the disposal of solid								
	wastes at landfills, and to control fly								
	tipping. Reference should be made to								
	ETWB TCW No. 31/2004.								
•	Training of site personnel in proper waste management and chemical waste handling procedures;								
•	Separation of chemical wastes for special handling and appropriate treatment at a licensed facility;								
	programme for drainage systems,								
	sumps and oil interceptors;								
•	Provision of sufficient waste disposal points and regular collection for disposal;								
	Adoption of appropriate measures to								
	minimize windblown litter and dust								
	during transportation of waste, such as								
	covering trucks or transporting wastes								
	in enclosed containers; and Implementation of a recording system								
	for the amount of wastes generated,								
	and disposed of (including recycled								

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	the disposal sites).								
6b.5.2.2	 Waste Reduction Measures Good management and control can prevent the generation of significant amounts of waste. It is recommended that the following good operational practices should be adopted to ensure waste reduction: Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Encourage collection of aluminum cans, plastic bottles and packaging material (e.g. carton boxes) and office paper by individual collectors. Separate labelled bins should be provided to help segregate this waste from other general refuse generated by the work force; and Any unused chemicals or those with remaining functional capacity should be reused as far as practicable. 		IWMF Operator			✓			Implemented
6b.5.2.3	Storage, Handling, Treatment, Collection and Disposal of Incineration By-Products The following measures are recommended for the storage, handling and collection of the incineration by-products: Ash should be stored in storage silos; Ash should be handled and conveyed in closed systems fully	IWMF Site/ During Operation Period	IWMF Operator			√		Incineration Residue Pollution Control Limits	N/A

				Imple	mentat	ion S	tages*		Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	segregatedfrom the ambient environment;								
	 Ash should be wetted with water to control fugitive dust, where necessary; 								
	All fly ash and APC residues should be treated, e.g. by cement solidification or chemical stabilization, for compliance with the proposed Incineration Residue Pollution Control Limits and leachability criteria prior to disposal;								
	 The ash should be transported in covered trucks or containers to the designated landfill site. 								
	The Contractor should provide EPD with chemical analysis results of the bottom ash, and treated fly ash and APC residues to confirm that the ash/residue can comply with the proposed Incineration Residue Pollution Control Limits before disposal.								
6b.6.3.1	 Fuel Oil Tank Construction and Test The fuel tank to be installed should be of specified durability. Double skin tanks are preferred. Underground fuel storage tank should be placed within a concrete pit. 	Fuel Oil Storage Tank/ During Design, Construction and Operation Periods	IWMF Contractor	~	✓	√			N/A
	The concrete pit shall be accessible								

				Imple	menta	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	to allow regular tank integrity tests to be carried out at regular intervals.								
	 Tank integrity tests should be conducted by an independent qualified surveyor or structural engineer. 								
	 Any potential problems identified in the test should be rectified as soon as possible. 								
6b.6.3.1	 Fuel Oil Pipeline Construction and Test Installation of aboveground fuel oil pipelines is preferable; if underground pipelines are unavoidable, concrete lined trenches should be constructed to contain the pipelines. Double skin pipelines are preferred. Distance between the fuel oil refuelling points and the fuel oil storage tank shall be minimized. Integrity tests for the pipelines should be conducted by an independent qualified surveyor or structural engineer at regular intervals. Any potential problems identified in the test should be rectified as soon as possible. 	Fuel Oil Pipelines/ During Design, Construction and Operation Periods	IWMF Contractor	•		✓			N/A
6b.6.3.1	Fuel Oil Leakage Detection Installation of leak detection device at storage tank and pipelines.	Fuel Oil Storage Tank and Pipelines/	IWMF Contractor	✓	√	√			N/A

				Imple	mentat	ion S	tages*		Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	 Installation and use of pressure gauges (e.g. at the two ends of a filling line) in fuel filling, which allows unexpected pressure drop or difference and sign of leakage to be detected. 	During Design, Construction and Operation Periods							
6b.6.3.1	 Storage Tank Refuelling Storage tank refuelling (from road tanker) should only be conducted by authorized staff of the oil company using the company's standard procedures. 	Fuel Oil Refuelling Point/ During Operation Period	IWMF Operator			✓			N/A
6b.6.3.1	Fuel Oil Spillage Response An Oil Spill Response Plan should be prepared by the operator to document the appropriate response procedures for oil spillage incidents in detail. General procedures to be taken in case of fuel oil spillage are presented below. • Training	IWMF Site/ During Operation Period	IWMF Operator			√			N/A
	 Training on oil spill response actions should be given to relevant staff. The training shall cover the followings: Tools & resources to combat oil spillage and fire, e.g. locations of 								
	oil spill handling equipment and fire fighting equipment; General methods to deal with oil spillage and fire incidents; Procedures for emergency drills in the event of oil spills and fire; and								

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant	Implomentation
				Des	С	0	Dec	Legislation and Guidelines	Implementation Status and Remarks
	➤Regular drills shall be carried out.								
	Communication								
	-Establish communication channel with the Fire Services Department (FSD) and EPD to report any oil spillage incident so that necessary assistance from relevant department can be quickly sought.								
	Response Procedures								
	 -Any fuel oil spillage within the IWMF site should be immediately reported to the Plant Manager with necessary details including location, source, possible cause and extent of the spillage. 								
	 -Plant Manager should immediately attend to the spillage and initiate any appropriate action to confine and clean up the spillage. The response procedures shall include the following: >Identify and isolate the source of spillage as soon as possible. >Contain the oil spillage and avoid infiltration into soil/ groundwater and discharge to storm water channels. >Remove the oil spillage. 								
	Clean up the contaminated area.								
	If the oil spillage occurs during storage tank refuelling, the refueling operation should immediately be								

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Implementation Status and Remarks
	stopped. Recovered contaminated fuel oil and the associated material to remove the spilled oil should be considered as chemical waste. The handling and disposal procedures for chemical wastes are discussed in the following paragraphs.								
6b.6.3.2	 Chemicals and Chemical Wastes Handling & Storage Chemicals and chemical wastes should only be stored in suitable containers in purpose-built areas. The storage of chemical wastes should comply with the requirements of the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. The storage areas for chemicals and chemical wastes shall have an impermeable floor or surface. The impermeable floor/ surface shall possess the following properties: Not liable to chemically react with the materials and their containers to be stored. Able to withstand normal loading and physical damage caused by container handling 	Chemicals and Chemical Wastes Storage Area / During Operation Period	IWMF Operator			~			N/A
	The integrity and condition of the impermeable floor or surface should								

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	be inspected at regular intervals to ensure that it is satisfactorily maintained								
	For liquid chemicals and chemical wastes storage, the storage area should be bunded to contain at least 110% of the storage capacity of the largest containers or 20% of the total quantity of the chemicals/chemical wastes stored, whichever is the greater.								
	Storage containers shall be checked at regular intervals for their structural integrity and to ensure that the caps or fill points are tightly closed.								
	Chemical handling shall be conducted by trained workers under supervision.								
6b.6.3.2	Chemicals and Chemical Wastes Spillage Response A Chemicals and/ or Chemical Wastes Spillage Response Plan shall be prepared by the operator to document in detail the appropriate response procedures for chemicals or chemical wastes spillage incidents. General procedures to be undertaken in case of chemicals/ chemical waste spillages are presented below.	IWMF Site/ During Operation Period	IWMF Operator			✓			N/A
	• Training								
	- Training on spill response actions								

				Imple	ementa	tion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	should be given to relevant staff. The training shall cover the followings:								
	Tools & resources to handle spillage, e.g. locations of spill handling equipment;								
	 General methods to deal with spillage; and 								
	Procedures for emergency drills in the event of spills.								
	Communication								
	 Establish communication channel with FSD and EPD to report the spillage incident so that necessary assistance from relevant department can be quickly sought. 								
	Response Procedures								
	 Any spillage within the IWMF site should be reported to the Plant Manager. 								
	 Plant Manager shall attend to the spillage and initiate any appropriate actions needed to confine and clean up the spillage. The response procedures shall include the followings: 								
	Identify and isolate the source of spillage as soon as possible;								
	Contain the spillage and avoid infiltration into soil/								

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	groundwater and discharge to storm water channels (in case the spillage occurs at locations out of the designated storage areas);								
	Remove the spillage; the removal method/ procedures documented in the Material Safety Data Sheet (MSDS) of the chemicals spilled should be observed;								
	Clean up the contaminated area (in case the spillage								
	The waste arising from the cleanup operation should be considered as chemical wastes.								
6b.6.3.3	Preventive Measures for Incineration By- products Handling The recommended measures listed below can minimize the potential contamination to the surrounding environment due to the incineration by-products: Ash should be stored in storage silos:	Storage, Handling & Collection of Incineration Ash at IWMF/ During Operation	IWMF Operator			~			N/A
	 Ash should be stored in storage silos; Ash should be handled and conveyed in closed systems fully 	Period							
	 Ash should be wetted with water to control fugitive dust, where necessary; 								
	All fly ash and APC residues should be treated, e.g. by cement solidification or chemical								

				Imple	menta	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	stabilization, for compliance with the proposed Incineration Residue Pollution Control Limits and leachability criteria prior to disposal;								
	 The ash should be transported in covered trucks or containers to the designated landfill site. 								
6b.6.3.4 - 6b.6.3.6	Incident Record After any spillage, an incident report should be prepared by the Plant Manager. The incident report should contain details of the incident including the cause of the incident, the material spilled and estimated spillage amount, and also the response actions undertaken. The incident record should be kept carefully and able to be retrieved when necessary. The incident report should provide sufficient details for the evaluation of any environmental impacts due to the spillage and assessment of the effectiveness of measures taken. In case any spillage or accidents results in significant land contamination, EPD should be informed immediately and the IWMF operator should be responsible for the cleanup of the affected area. The responses procedures described in Section 6b.6.3.1 and Section 6b.6.3.2 of EIA report should be followed accordingly together with the land contamination assessment and remediation guidelines	IWMF Site/ During Operation Period	IWMF Operator			✓		Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management and the Guidance Note for Contaminated Land and Remediation.	N/A

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	stipulated in the Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management and the Guidance Note for Contaminated Land and								
	Remediation.								

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table B.5 Implementation Schedule for Ecological Quality Measures for the IWMF at the artificial island near SKC

Table B.5	Implementation Schedule for Ecological Qua	ality Measures to	or the IWMF at the art	inciai	isiand	near a	SKC		1
				Impl	ement	ation S	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
7b.8.2.1	Measures to avoid direct loss of intertidal habitat • The site boundary has been proposed to avoid direct contact with the intertidal natural rocky shore of Shek Kwu Chau. It avoids direct loss of intertidal communities and the existing natural rocky shore habitat, where Reef Egret and White-bellied Sea Eagle have been recorded within and in the vicinity of this habitat.	IWMF site	Design team	✓				EIAO-TM	N/A
7b.8.2.2	Measures to minimise loss of coastal subtidal habitat Extensive coral colonies were recorded at the coastal hard bottom habitat at Shek Kwu Chau. To avoid and minimise the extensive direct impact on the coral colonies, the proposed reclamation area has been moved further offshore to minimise loss of subtial habitat near shore.	IWMF site	Design team	✓				EIAO-TM	N/A
7b.8.2.3	 Zero Discharge Scheme The design scheme of the Project has avoided discharge of wastewater into the marine environment. mechanical treatment plant, or for onsite washdown and landscape. 	IWMF site	Design team, IWMF operator	√		√		WPCO	N/A
7b.8.2.4	Measures to avoid loss of plant species of conservation importance Landing portal construction works would not cause direct lost to the recorded individual of protected plant species,	Cheung Sha landing portal	Design team, Contractor	√	✓		√	EIAO-TM	N/A

				Impl	ement	ation	Stages*	Relevant	Implementation	
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks	
	 Aquilaria sinensis, at the coastal shrubland habitat at Cheung Sha. As a precautionary measure, the plant should be tagged with eye-catching tape and fenced off prior to works, in order to avoid any damage by workers. 									
7b.8.3.1- 7b.8.3.15	 Measures to minimise water quality impact Measures for water quality as recommended in Section 5b of the EIA Report should be implemented. 	Work site	Design team, contractor, IWMF operator	~	~	✓	✓	EIAO-TM; ProPECC PN 1/94; WPCO	Implemented	
7b.8.3.16 - 7b.8.3.30	Measures to minimise disturbance on Finless Porpoise Minimisation of Habitat Loss for Finless Porpoise Substantial revision has been made on the layout plan and form of the breakwater, in order to minimise the potential loss of important habitat for Finless Porpoise. The revision has greatly reduced the size of the embayment area, as well as the Project footprint. As a result, the size of habitat loss for Finless Porpoise has reduced from the original ~50 ha, down to ~31 ha. Avoidance of peak season for finless porpoise occurrence	IWMF site,	Design team, contractor, IWMF operator		V	V		EIAO-TM, Supporting Document for Application for Variation of the Environmental Permit (EP- 429/2012)	Implemented for avoidance of construction works that may produce underwater acoustic disturbance, Vessel Travel Route implementation, training of staff, MMEZ and marine mammal watching works during deployment of silt curtain; N/A for others	
	To minimise potential acoustic disturbance from construction activities									

				Imple	ementa	ation \$	Stages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	on Finless Porpoise, construction works that may produce underwater acoustic								
	disturbance should be scheduled outside the								
	months with peak Finless Porpoise								
	occurrence (December to May), including:								
	- sheet piling works for construction								
	of cofferdam surrounding the								
	reclamation area (Phase 1);								
	 sheet piling works for construction of the shorter section of breakwater 								
	(Phase 1);								
	- sheet piling works for construction of								
	the remaining section of breakwater								
	(Phase 3);								
	- bored piling works for berth area (Phase								
	3); and - submarine cable installation works								
	between Shek Kwu Chau and Cheung								
	Sha.								
	Such works should be restricted within June								
	to November. This approach would not only								
	avoid the peak season for Finless Porpoise								
	occurrence, the magnitude of impacts								
	arise from acoustic disturbance would also be minimised.								
	be minimised.								
	Submarine cable installation works								
	Since the DCM ground treatment and the								
	installation of precast seawalls and								

				Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	breakwaters should generate no underwater								
	acoustic disturbance to Finless Porpoise, no								
	specific mitigation measures are required.								
	Opt for quieter construction methods and plants								
	Considering the sensitivity of marine								
	mammals to underwater acoustic								
	disturbance, instead of the previously								
	proposed conventional breakwater and								
	reclamation peripheral structure, which								
	requires noisy piling works, the current								
	circular cells structure for breakwater and reclamation peripheral structure is								
	proposed. A quieter sheet piling method								
	using vibratory hammer or hydraulic impact								
	hammer, should be adopted for the								
	installation of circular cells for cellular								
	cofferdam and northern breakwater								
	during Phase 1, and southern breakwater Phase 3;								
	breakwater Friase 3,								
	Non-percussive bore piling method would								
	be adopted for the installation of tubular								
	piles for the berth construction during								
	Phase 3.								
	Monitored exclusion zones								
	During the installation/re-								
	installation/relocation process of floating type								
	silt curtains, in order to avoid the accidental								
	entrance and entrapment of marine								

				Imple	ementa	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	mammals within the silt curtains, a							Garaoninos	
	monitored exclusion zone of 250 m radius								
	from silt curtain should be implemented.								
	The exclusion zone should be closely								
	monitored by an experienced marine								
	mammal observer at least 30 minutes								
	before the start of installation/re-								
	installation/relocation process. If a marine								
	mammal is noted within the exclusion								
	zone, all marine works should stop								
	immediately and remain idle for 30 minutes,								
	or until the exclusion zone is free from								
	marine mammals.								
	The experienced marine mammal observer								
	should be well trained to detect marine								
	mammals. Binoculars should be used to								
	search the exclusion zone from an								
	elevated platform with unobstructed visibility.								
	The observer should also be independent								
	from the project proponent and has the								
	power to call-off construction activities.								
	In addition, as marine mammals cannot								
	be effectively monitored within the								
	proposed monitored exclusion zone at								
	night, or during adverse weather								
	conditions (i.e. Beaufort 5 or above,								
	visibility of 300 meters or below), marine								
	works should be avoided under weather								
	conditions with low visibility.								

				Imple	ement	tation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 Upon the completion of the installation/re-installation/relocation of floating type silt curtain, all marine works would be conducted within a fully enclosed environment within the silt curtain, hence exclusion zone monitoring would no longer be required. Subsequently, a marine mammal watching plan should be implemented. The plan should include regular inspection of silt curtains, and visual inspection of the waters surrounded by the curtains. Special 								
	attention should be paid to Phase 2 (reclamation) where the floating type still curtain would be opened occasionally for vessel access, leaving a temporary 50 m opening. An action plan should be devised to cope with any unpredicted incidents such as the case when marine mammals are found within the waters surrounded by the silt curtains.								
	Small openings at silt curtains								
	 The openings for vessel access at the silt curtains should be as small as possible to minimise the risk of accidental entrance. 								
	Adoption of regular travel route								

				Imple	<u>ement</u>	ation \$	Stages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	During construction and operation, captains								
	of all vessels should adopt regular travel								
	route, in order to minimize the chance of								
	vessel collision with marine mammals,								
	which may otherwise result in damage to								
	health or mortality. The regular travel route should avoid areas with high								
	sighting density of Finless Porpoise as much								
	as possible.								
	do possibio.								
	Vessel speed limit								
	The frequent vessel traffic in the vicinity								
	of works area may increase the chance of								
	mammal mammals being killed or								
	seriously injured by vessel collision. A								
	speed limit of ten knots should be strictly								
	enforced within areas with high density of Finless Porpoise.								
	Tilless Foljoise.								
	Passive acoustic monitoring and land-based								
	theodolite monitoring surveys should be								
	adopted to verify the predicted impacts								
	and effectiveness of the proposed								
	mitigation measures.								
	Training of Staff								
	Staff, including captains of vessels,								
	should be aware of the guidelines for safe								
	vessel operations in the presence of								
	cetaceans during construction and								

		_		Impl	ement	ation	Stages*	Relevant	Implementation	
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent		С	0	Dec	Legislation and Guidelines	Status and Remarks	
	operation phases. Adequate trainings should be provided									
7b.8.3.31 - 7b.8.3.34	Measures to minimise impact on corals Coral translocation	IWMF site	Design team, contractor, IWMF operator	✓	√	✓	✓	EIAO-TM	Implemented, tagged coral found missing after hitting by typhoons	
	Coral communities within and in proximity to the proposed dredging sites would be disturbed by the Project due to the dredging operations. In order to minimise direct loss of coral communities, translocation of corals that are attached to movable rocks with diameter less than 50 cm are recommended. In order to avoid disturbance to corals during the spawning period, the spawning season of corals (June to August) should be avoided; and that translocation should be carried out during the winter season (November-March).								Re-tagging of 10 coral colonies at indirect impact site and control site were conducted in November and December 2018 respectively.	
	The REA survey results suggest that the 198 directly affected coral colonies were attached to movable rocks (less than 50 cm in diameter). It is technically feasible to translocate them to avoid direct loss.									
	Prior to coral translocation, a more detailed baseline survey, including event / action plan for coral monitoring should be submitted upon approval of this Project, prior to commencement of									

					Imple	<u>emen</u> ta	ation S	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementat Agent	ion	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	construction works. Advice from relevant governmental departments (i.e. AFCD) and professionals would be sought after, in order to identify a desirable location for the relocation of coral communities. Post-translocation monitoring on the translocated corals should also be considered.									
	Coral monitoring programme									
	 A coral monitoring programme is recommended to assess any adverse and unacceptable impacts to the coral communities at the coasts of Shek Kwu Chau during construction of the Project. 									
	Phasing of Works									
	To minimize environmental impacts, the proposed phasing of construction works has been carefully designed to reduce the amount of concurrent works, hence minimize SS elevation and the associated impacts on corals.									
7b.8.3.35 - 7b.8.3.41	Specific measures to minimize disturbance on breeding White-bellied Sea Eagle Avoidance of noisy works during the	IWMF site, marine traffic route		am, VMF	✓	√	✓	√	EIAO-TM	Implemented
	breeding season of White-bellied Sea EagleTo minimize potential noise disturbance									

			Implementation Agent	Imple	<u>ement</u>	ation :	Stages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing		Des	С	0	Dec	Legislation and Guidelines	
	from construction activities on WBSE, noisy								
	construction works should be scheduled								
	outside their breeding season (December to								
	May) to minimise potential degradation in								
	breeding ground quality and breeding								
	activities, including:								
	- sheet piling works for construction								
	of cofferdam surrounding the								
	reclamation area (Phase 1);								
	- sheet piling works for construction of								
	the shorter section of breakwater								
	(Phase 1);								
	- sheet piling works for construction of								
	the remaining section of breakwater								
	(Phase 3); and								
	- bored piling works for berth area (Phase								
	3).								
	Opt for quieter construction methods and plants								
	To minimise potential construction noise								
	disturbance on WBSE, quieter construction								
	methods and plants should be adopted. The								
	recommended noise mitigation measures in								
	the Noise chapter (Section 4b.8 of the								
	EIA Report) should be implemented to								
	minimise potential noise disturbance to								
	acceptable levels.								
	Restriction on vessel access near the nest of								
	White-bellied Sea Eagle								

				Imple	<u>ement</u>	ation \$	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	C	0	Dec	Legislation and Guidelines	Status and Remarks
	 During construction and operation, in order to minimize disturbance on the existing WBSE nest, a pre-defined practical route to restrict vessel access near the nest should be adopted to keep vessels and boats as far away from the nest as possible. White-bellied Sea Eagle monitoring programme A WBSE monitoring programme is recommended to assess any adverse and unacceptable impacts to the breeding activities of WBSE during construction and operation of the Project. Monitoring surveys for WBSE would include preconstruction phase (twice per month for duration of three months during their breeding season -between December and May, immediately before the commencement of works), construction phase, and operation phase (two years after the completion of construction works). 								
	 Surveys should be conducted twice per month during their breeding season (from December to May); and once per month outside breeding season (June to November). More details on monitoring for WBSE are presented in the EM&A Manual. 								

			Implementation Agent	Impl	lement	ation	Stages*	Legislation	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing		Des	С	0	Dec		
	Education of staffStaff, including captains of all vessels								
	during construction and operation phases, should be aware of the ecological importance of WBSE. Awareness should be raised among staff to minimise any intentional or unintentional disturbance to the nest.								
	Minimisation of Glare Disturbance								
	To minimise glare disturbance on WBSE, which may cause disorientation of birds by interfering with their magnetic compass, and disruption in behavioural patterns such as reproduction, fat storage and foraging pattern, any unnecessary outdoor lighting should be avoided, and in-ward and down-ward pointing of lights should be adopted.								
	 Construction of Seawall/Breakwaters To widen the open channel between the Artificial Island and Shek Kwu Chau. To design the precast concrete seawall with environmental friendly features. 	IWMF site	Design team, contractor, IWMF operator	· ·	✓			Supporting Document for Application for Variation of Environmental Permit (EP- 429/2012)	N/A
7b.8.3.42	Opt for Quieter Construction Methods and Plants • Quieter construction methods and plants	Work site	Design team, contractor, IWMF operator	√	✓	✓	✓	EIAO-TM	Implemented

		Location / Timing		Impl	ement	ation	Stages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures		Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	should be used to minimise disturbance to the nearby terrestrial habitat and the associated wildlife.								
7b.8.3.43	Measures to minimize impacts from artificial lighting Unnecessary lighting should be avoided, and shielding of lights should be provided to minimize disturbance from light pollution on fauna groups.	IWMF site	Design team, contractor, IWMF operator	✓	✓	✓		EIAO-TM	Implemented
7b.8.3.44 - 7b.8.3.45	 Measures to minimize accidental spillage Regular maintenance of vessels, vehicles and equipment that may cause leakage and spillage should only be undertaken within pre-designated areas, which are appropriately equipped to control the associated discharges. Oils, fuels and chemicals should be contained in suitable containers, and only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas should be sited on sealed areas in order to prevent spillage of fuels and solvents to the nearby watercourses. All waste oils and fuels should be collected in designated tanks prior to disposal. 	Work site	Contractor, IWMF operator		•	~	*	EIAO-TM	Implemented
7b.8.3.46	Measures to minimise sewage effluent Temporary sanitary facilities, such as	Work site	Contractor		√			EIAO-TM	N/A

				Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce.								
7b.8.3.47	Measures to minimise drainage and construction runoff • Potential ecological impacts resulted from potential degradation of water quality due to unmitigated surface runoff could be minimised via the detailed mitigation measures in Section 5b.8 of the EIA Report. The following presents some of the mitigation measures: - On-site drainage system with implemented sedimentation control facilities. - Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. - Provision of embankment at boundaries of earthworks for flood protection. - Water pumped out from foundation piles must be discharged into silt removal facilities. - During rainstorms, exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable. - Exposed soil surface should be	Work site	Contractor		•			EIAO-TM	N/A
	minimized to reduce siltation and runoff Earthwork final surfaces should be								

		Location / Timing	Implementation Agent	Imple	ementa	tion S	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures			Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	well compacted. Subsequent permanent surface protection should be immediately performed. - Open stockpiles of construction materials, and construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms.								
7b.8.3.48	Measures to minimise impacts from general construction activities	Work site	Contractor		√			EIAO-TM	Implemented
	To avoid the entering of construction solid waste into the nearby habitats, construction solid waste should be collected, handled and disposed of properly to avoid entering to the nearby habitats. It is recommended to clean the construction sites on a regular basis.								
7b.8.3.49	Pest Control Good waste management practices should be adopted at the IWMF in order to minimise the risk of introduction of pest to the island:	IWMF site	IWMF operator			√			N/A
	 Transportation of wastes in enclosed containers Waste storage area should be well maintained and cleaned Waste should only be disposed of at designated areas Timely removal of the newly arrived waste Removal of items that are capable of 								

		Location / Timing	Implementation Agent	Imple	ementa	ation	Stages*	* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures			Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	retaining water - Rapid clean up of any waste spillages - Maintenance of a tidy and clean site environment - Regular application of pest control - Education of staff the importance of site cleanliness								
7b.8.3.50	Control of Marine Habitat Quality during Operation Phase	IWMF site	IWMF operator			✓		EIAO-TM; WPCO	N/A
	Depending on the seabed condition of the approach channel for marine vessels during operation phase of the IWMF, maintenance dredging may be required to ensure safe access. In order to avoid degradation in water quality due to elevation in SS and dispersion of sediment plume due to dredging works, it is recommended that any future maintenance dredging works should not be carried out within 100 m from the shore, similar to that of the dredging for anti-scouring protection layer during construction phase. All maintenance dredging works should be carried out with the implementation of silt curtain to control the dispersion of SS. The production rate should comply with the permit dredging rate and number of grab per hour.								
7b.8.4.1 - 7b.8.4.8	Compensation of loss of important habitat of Finless Porpoise	Waters between Shek Kwu Chau and Soko Islands	Project Proponent	√		✓		EIAO-TM	N/A

				Imple	ement	ation	Stages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	Designation of Marine Park								
	 The Project Proponent has made a firm commitment to seek to designate a marine park of approximately 700 ha in the waters between Soko Islands and Shek Kwu Chau, in accordance with the statutory process stipulated in the Marine Parks Ordinance, as a compensation measure for the habitat loss arising from the construction of the IWMF at the artificial island near SKC. The Project Proponent shall seek to complete the designation by 2018 to tie in with the operation of the IWMF at the artificial island near SKC. 								
	A further study should be carried out to review relevant previous studies and collate available information on the ecological characters of the proposed area for marine park designation; and review available survey data for Finless Porpoise, water quality, fisheries, marine traffic and planned development projects in the vicinity. Based on the findings, ecological profiles of the proposed area for marine park designation should be established, and the extent and location of the proposed marine park be determined. The adequacy of enhancement measures should also be reviewed.								

		Location / Timing	Implementation Agent	Imple	ement	ation	Stages*	Relevant	Implementation	
EIA Ref	Environmental Protection Measures / Mitigation Measures			Des	С	0	Dec	Legislation and Guidelines	Status and Remarks	
	 In addition, a management plan for the proposed marine park should be proposed, covering information on the responsible departments for operation and management (O&M) of the marine park, as well as the O&M duties of each of the departments involved. Consultation with relevant government departments and stakeholders should be conducted under the study. The study should be submitted to Director of Environmental Protection (DEP) for approval before the commencement of construction works. The Project Proponent should provide assistance to AFCD during the process of the marine park designation. 									
7b.8.5.1 - 7b.8.5.4	Additional Enhancement or Precautionary Measures Deployment of Artificial Reefs • Deployment of artificial reefs (ARs) is an enhancement measure for the marine habitats. ARs are proposed to be deployed within the proposed marine park under this Project. The exact location, dimension and type of ARs to be deployed are to be further investigated along with the further study of the proposed marine park under this Project. The proposed ARs would be deployed at the same time as the complete	proposed marine p	the park this	Project Proponent	~		✓		EIAO-TM	N/A

				Impl	ement	ation 9	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	designation of marine park.								
	Release of Fish Fry at Artificial Reefs and Marine Park								
	 Release of fish fry at the proposed ARs, as well as the proposed marine park under this study, should enhance the fish resources in the nearby waters, and subsequently food sources for Finless Porpoise. The proposed ARs with various micro-habitats would have the potential to provide shelter and nursery ground for the released fish fry. The frequency and quantity of fry to be released should be agreed by AFCD. 								

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table B.6 Implementation Schedule for Fisheries Measures for the IWMF at the artificial island near SKC

					Imple	ement	ation	Stages*	s* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent		Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
8b.8.1.2	Measure to minimize loss of and disturbance on fisheries resources	IWMF site	Design contractor	team,	√	√		√	EIAO-TM	N/A
	 Alteration to the phasing of works, construction method, and layout plan of the IWMF at the artificial island near SKC has been made. The total fishing ground to be permanently lost due to the project has been significantly reduced from ~50 ha to ~31 ha. By adopting the current circular cells instead of the conventional seawall construction method, SS elevation would be greatly reduced, minimizing adverse impact on the health of fisheries resources. 	ruction method, and layout plan of the F at the artificial island near SKC has made. The total fishing ground to ermanently lost due to the project has significantly reduced from ~50 ha to ha. By adopting the current circular instead of the conventional all construction method, SS tion would be greatly reduced, nizing adverse impact on the health								
8b.8.1.3	Measure to minimize impingement and entrainment	IWMF site	Design contractor, operator	team, IWMF	✓	√	✓		EIAO-TM	N/A
	 Provision of a screen at the water intake point for desalination plant would be essential to minimize the risk of impingement and entrainment of fisheries resources (including fish, larvae and egg) through the intake point. 									

						Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing		Implementation Agent		Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
8b.8.1.4- 8b.8.1.6	 Measures to control water quality No wastewater effluent, anti-fouling agent, heavy metals and other contaminants would be released during operation phase of the Project. Mitigation measures recommended in the water quality impact assessment during construction and operation would serve to protect fisheries resources from indirect impacts resulted from the Project 	Work	site, IWMF	Design contractor, operator	team, IWMF	✓	✓	✓	✓	EIAO-TM	Implemented
8b.8.1.7 - 8b.8.1.8	Additional Enhancement / Precautionary Measures Artificial Reefs (ARs) are proposed to be deployed within the proposed marine park under this Project as an enhancement measure for the marine habitats. This enhancement feature would bring positive impacts to the previously identified important spawning and nursery ground for fisheries resources. Release of Fish Fry at Artificial Reefs Release of fish fry has been proposed under this Project. The proposed deployment of ARs within the proposed marine park would provide shelter and nursery ground for the released fish fry. The frequency and quantity of fry to be released should be agreed by AFCD.	betwee Islands Shek Chau	park waters n Soko	Project Pro	ponent	✓		✓		EIAO-TM	N/A

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table B.7 Implementation Schedule for Landscape and Visual Measures for the IWMF at the artificial island near SKC

	Environmental Protection	1	Implementation	Impl	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MLVC- 01	Grass-hydroseeded bare soil surface and stock pile area	Work site / During construction phase	Contractor		√				N/A
S10b.10 MLVC-02	Landscape Design 1) Early planting using fast grow trees and tall shrubs at strategic locations within site as buffer to block view corridors to the site from the VSRs, and to locally screen haul roads, excavation works and site preparation works.	Work site / During design & construction phases	Contractor	✓	✓				N/A
	Use of tree species of dense tree crown to serve as visual barrier.								
	3) Hard and soft landscape treatment (e.g. trees and shrubs) of open areas within development to provide a background for the outdoor containers from open view, shade and shelter, and a green appearance from surrounding viewpoints.								
	 Planting strip along the periphery of the project site. 								
	5) Selected tree species suitable for the coastal condition.								

	Environmental Protection		Implementation	Imple	ement	ation	Stages*	Relevant	Implementation			
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks			
S10b.10 MLVC-03	 Adoption of Natural Features of the Existing Shoreline 1) Use of boulders in different sizes and with the similar textures of the existing rocky shores for the construction of breakwater and artificial shoreline in order to blend into the existing natural shoreline. 	Work site / During construction phase	Contractor		√				N/A			
0401.40	 Use of cellular cofferdam together with the natural boulders to form a curvature shoreline for the reclamation area to echo with the natural shoreline of SKC. 											
S10b.10 MLVC-04	Greening Design (Rooftop & Vertical Greening) 1) Implementation of rooftop and vertical greening (vertical building envelope) along the periphery of each building block to increase the amenity value of the work, moderate temperature extremes and enhance building energy performance. The greening appearance of the building shall enhance its visual harmony with the natural surroundings as well as reduce the apparent visual mass of the structure.	Work site / During design & construction phases	Contractor	~	✓				N/A			
	 Sufficient space between concrete enclosure and stack to minimize heat transfer. 											
	 Introduction of landscape decks at the stack to further enhance the overall natural and green concept unique for this site. 											

	Environmental Protection		Implementation	Imple	ement	ation	Stages*	Relevant	Implementation	
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks	
S10b.10 MVC-01	Visual Mitigation and Aesthetic Design	Structures in IWMF /	Contractor	✓	✓				N/A	
WVC-01	Use of natural materials with recessive color to minimize the bulkiness of the building.	During design & constructio								
	Adoption of innovative aesthetic design to the chimney to minimize or visually mitigate the massing of the chimney so as to reduce its visual impact to the surroundings.	n phases								
	 Color of the chimney in a gradual changing manner to match with the color of the sky. 									
	Provision of observation deck for public enjoyment at the top of the chimney to diminish the feeling of chimney.									
	5) Provision of sky gardens between the two stacks to allow additional greening for enhancing the aesthetic quality. Maintenance access (elevator and staircase) from the ground floor to the sky gardens will be provided to allow maintenance of the sky gardens.									
	Integration of the visitor's walkway with different material façade design of incinerator plant to enhance the aesthetic quality.									
S10b.10 MVC-02	Control of the security floodlight for construction areas at night to avoid excessive glare to the surrounding receiver.	Work site / During construction phase	Contractor		✓				Implemented	

	Environmental Protection		Implementation	Imple	ment	ation	Stages*	Relevant	Implementation
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MVC-03	Optimization of the construction sequence and construction programme to minimize the duration of impact.	Work site / During design & construction phases	Contractor	*	✓				Implemented
S10b.10 MVC-04	Storage of the backfilling materials for site formation & construction materials / wastes on site at a maximum height of 2m, covered with an impermeable material of visually un-obtrusive material (in earth tone).	Work site / During construction phase	Contractor		√				N/A
S10b.10 MVC-05	Reduction of the number of construction traffic at the site to practical minimum.	Work site / During construction phase	Contractor		✓				Implemented
S10b.10 MLVO-01	Planting Maintenance Provision of proper planting maintenance and replacement of defective plant species on the new planting areas to enhance aesthetic and landscape quality.	Project site / During Operation phase	Contractor			✓			N/A
S10b.10 MVO-01	Environmental Education Centre Development of an Environmental Education Center, in which regular exhibitions and lectures to promote environmental awareness and waste reduction concept would be provided, as a part of the IWMF for the general public to alleviate negative public perceptions of the development.	Project site / During Operation phase	Contractor			✓			N/A
\$10b.10 MVO-02	Control of Light Control the numbers of lights and their intensity to a level that is good enough to meet the safety requirements at night but not excessive.	Project site / During Operation phase	Contractor			√			N/A

EIA Ref	Environmental Protection Measures / Mitigation Measures	1 4: /	Implementation	Imple	ement	ation	Stages*	Relevant	Implementation Status and Remarks	
		Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines		
S10b.10 MVO-03	Control of Operation Time Minimization of the frequency of waste transportation to practical minimum (e.g. limit the reception of MSW from 8 am to 8 pm)	phase	Contractor			√			N/A	

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Contract No. EP/SP/66 Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix C	Impact Monitoring Schedul	e of the Reporting
	Month	

			Impact Monitoring Schedule for IWMF			
			Oct-19			
Sun	Mon	Tue	Wed	Thu	Fri	Sat
29	30	1	2	3	4	5
			Water Quality monitoring for BL (2, B, B, H, H, C, C, Z, F, CH, CR2, M), S, U & B, S	Impact Daytime, Evening & Night time Note monitoring for M1, M2 & M3	Water Quality monitoring for \$1, 10, 2, 18, 44, 11, 11, 12, 7, 12, 12, 14, 14, 15, 15, 24, 23 10	
6	7	8			11	12
		Water Quality monitoring for Bit, BZ, BS, B4, Ht, Ct, CZ, FL, CR1, CR2, M1, S1, S2 & S3 S15 & S3 S15 & S3 S15 & S3 Flood Tide: 1251 - 2023 Monitoring: Time: * Mid-ebi: 0820 - 1225 Daytime, Evening & Night tens love enoutbring for Marine House House S10 - 1205 Daytime, Evening & Night tens love enoutbring for M1, M2 & M3 % Coolegy monitoring for Marine Manimals by Vessels based Line Transect Survey		Water Quality monitoring for BLI, RE, BS, B4, HL, CL, CZ, FL, CR1, CR2, MJ, SL, SE & SI Bh Tide Code 3-4.01 Flood Tide: 14.01 - 1.051 Monitoring Time: Mol + 80: 03.5 - 12.05 A Mol Hoofs 14.01 **Ecology monitoring for Marine Mammals by Vessel-based Line-Transect Survey		Water Quality monitoring for 81, 82, 83, 84, 11, 11, 12, 71, 72, 71, 72, 71, 72, 71, 73, 72, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74
13	Impact Impact	Impact	Impact	I/	Impact	19
	Water Quality monitoring for Bit, BJ, BB, BH, CL, CZ, FJ, CRJ, CRJ, CRJ, MI, SJ, CR, SB, TE, CRJ, CRJ, CRJ, CRJ, CRJ, CRJ, CRJ, CRJ		Water Quality monitoring for Bit, BZ, BB, BH, CL, CZ, FI, CR1, CR2, MI, 51, Dat S. Todal Periodi: 151, Data Periodi: 15b Tide 11:00 -16:20 Flood Tide: 0:435 - 11:00 Monitoring Timer, Mid-ebb: 11:35 - 15:25 * Mid-flood: 0:800 - 10:40		Water Quality monitories for Bit, Bit, Bit, Bit, Bit, C. Q. Fit, CR1, CR2, MI, 51, Sit, Sit, Sit, Sit, Sit, Sit, Sit, Sit	
20	21	22	23	24	25	26
	Daytime, Evening & Night time Noise monitoring for M1, M2 & M3	Water Quality monitoring for \$11, 12, 18, 14, 11, 11, 12, 7, 1, C1, 1, C1, C2, M1, \$1, 12, 43, 13, 12, 43, 13, 12, 43, 13, 12, 43, 13, 12, 43, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14		Water Quality monitoring for \$11, \$12, \$13, \$14, \$14, \$1, \$1, \$2, \$1, \$24, \$1, \$13, \$24, \$34, \$34, \$34, \$34, \$34, \$34, \$34, \$3	Impact Ecology monitoring for WBSE	Water Quality monitoring for Bit, IZL Bit, Bit, H1, C1, C2, F1, CR1, CR2, M1, S1, D2 & S3 Sh Teler 10738 - 1354 Flood Tiels - 1354 - 10.27 Monitoring Times More being Times Mid-Pood: 15:25 - 18:55
27	28 Impact		30	31		
Remarks:	Water Quality monitoring for 81, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51	impact Daytime, Evening & Night time Nose monitoring for M1, M2 & M3	Water Quality monitoring for Bit, 20, as Bull, H.C., CZ, FJ, CR1, CR2, MJ, SI, CB & AS GB T & GB & AS 6 b T det 11:12 - 16:15 Flood Tiec 0-12 - 11:12 Monitoring Time: Mod-Brigg CB & CB			

Remarks:

1. Daytime Noise Monitoring (07:30-1900), Evening Time Noise Monitoring (1900-2300), Night Time Noise Monitoring (2300-0700)

2. Water Quality Monitoring for \$1.52 and \$3 will only conduct during DCM works, refer to Detailed DCM Plan

Contract No. EP/SP/66 Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix D	Water Quality Monito	oring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B1	20191002	Sunny	Moderate	Mid-Flood	В	4	08:59	6.44	8.03	27.4	28.58	2.69	7	112	0.167	W
B1	20191002	Sunny	Moderate	Mid-Flood	В	4	08:59	6.66	7.86	27.54	28.47	2.88	7	113	0.132	NW
B1	20191002	Sunny	Moderate	Mid-Flood	S	1	09:00	6.8	8.19	27.26	28.67	3.21	6	111	0.198	W
B1	20191002	Sunny	Moderate	Mid-Flood	S	1	09:00	6.53	7.9	27.74	28.33	3.12	8	112	0.125	W
B2	20191002	Sunny	Moderate	Mid-Flood	В	3.6	09:20	6.88	7.92	27.76	28.49	3.07	8	112	0.122	W
B2	20191002	Sunny	Moderate	Mid-Flood	В	3.6	09:20	6.35	8.17	27.4	28.41	2.53	8	112	0.22	SW
B2	20191002	Sunny	Moderate	Mid-Flood	S	1	09:21	6.48	8.21	27.6	28.54	3.38	7	112	0.262	W
B2	20191002	Sunny	Moderate	Mid-Flood	S	1	09:21	6.34	7.85	27.59	28.43	2.96	8	112	0.265	NW
В3	20191002	Sunny	Moderate	Mid-Flood	В	3.8	09:52	6.43	7.86	27.49	28.74	2.87	8	112	0.152	
В3	20191002	Sunny	Moderate	Mid-Flood	В	3.8	09:52	6.23	8.02	27.78	28.8	2.74	9	112	0.16	W
В3	20191002	Sunny	Moderate	Mid-Flood	S	1	09:53	6.45	7.9	27.63	28.82	3.24	7	112	0.152	W
В3	20191002	Sunny	Moderate	Mid-Flood	S	1	09:53	6.77	7.88	27.48	28.89	3.41	8	113	0.195	SW
B4	20191002	Sunny	Moderate	Mid-Flood	В	4	10:03	6.67	8.29	27.38	28.81	2.88	9	112	0.132	NW
B4	20191002	Sunny	Moderate	Mid-Flood	В	4	10:03	6.23	8.18	27.43	28.57	2.76	10	112	0.173	W
B4	20191002	Sunny	Moderate	Mid-Flood	S	1	10:04	6.57	7.85	27.44	28.76	3.44	9	113	0.287	NW
B4	20191002	Sunny	Moderate	Mid-Flood	S	1	10:04	6.46	8.2	27.78	28.51	3.05	9	114	0.152	W
C1A	20191002	Sunny	Moderate	Mid-Flood	В	10.6	09:31	6.44	7.94	27.67	28.71	2.6	8	112	0.218	SW
C1A	20191002	Sunny	Moderate	Mid-Flood	В	10.6	09:31	6.44	7.87	27.64	28.52	2.74	8	112	0.213	SW
C1A	20191002	Sunny	Moderate	Mid-Flood	М	5.8	09:32	6.48	8.05	27.38	28.66	2.95	5	113	0.167	W
C1A	20191002	Sunny	Moderate	Mid-Flood	М	5.8	09:32	6.68	8.22	27.8	28.32	3.03	6	112	0.2	W
C1A	20191002	Sunny	Moderate	Mid-Flood	S	1	09:33	6.61	8.24	27.62	28.53	3.18	4	112	0.141	W
C1A	20191002	Sunny	Moderate	Mid-Flood	S	1	09:33	6.46	8.06	27.22	28.35	3.09	5	112	0.168	W
C2A	20191002	Sunny	Moderate	Mid-Flood	В	10.8	08:21	6.37	7.98	27.28	28.37	2.58	7	113	0.2	W
C2A	20191002	Sunny	Moderate	Mid-Flood	В	10.8	08:21	6.7	7.97	27.31	28.16	3.09	6	112	0.188	W
C2A	20191002	Sunny	Moderate	Mid-Flood	М	5.9	08:22	6.2	8.09	27.5	28.3	2.85	6	112	0.262	W
C2A	20191002	Sunny	Moderate	Mid-Flood	М	5.9	08:22	6.91	8.11	27.76	28.24	2.96	6	113	0.221	SW
C2A	20191002	Sunny	Moderate	Mid-Flood	S	1	08:23	6.31	8.25	27.5	28.15	3.4	5	112	0.234	W
C2A	20191002	Sunny	Moderate	Mid-Flood	S	1	08:23	6.57	8.2	27.71	28.11	3.37	5	112	0.21	W
CR1	20191002	Sunny	Moderate	Mid-Flood	В	11.1	08:38	6.3	8.17	27.71	28.09	2.72	12	113	0.142	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR1	20191002	Sunny	Moderate	Mid-Flood	В	11.1	08:38	6.65	8.19	27.21	28.03	2.9	12	112	0.204	W
CR1	20191002	Sunny	Moderate	Mid-Flood	М	6.05	08:39	6.37	7.86	27.58	28.39	3.17	10	112	0.273	W
CR1	20191002	Sunny	Moderate	Mid-Flood	М	6.05	08:39	6.26	8.27	27.55	28.37	3.31	11	112	0.171	W
CR1	20191002	Sunny	Moderate	Mid-Flood	S	1	08:40	6.85	8.14	27.24	28.19	2.99	8	113	0.256	W
CR1	20191002	Sunny	Moderate	Mid-Flood	S	1	08:40	6.52	8.18	27.34	28.23	3.4	9	112	0.164	W
CR2	20191002	Sunny	Moderate	Mid-Flood	В	9.9	09:11	6.46	7.91	27.75	28.61	2.56	6	112	0.288	NW
CR2	20191002	Sunny	Moderate	Mid-Flood	В	9.9	09:11	6.66	8.17	27.83	28.42	2.97	7	112	0.203	SW
CR2	20191002	Sunny	Moderate	Mid-Flood	М	5.45	09:12	6.53	8.06	27.54	28.6	3.23	5	112	0.275	SW
CR2	20191002	Sunny	Moderate	Mid-Flood	М	5.45	09:12	6.17	8.09	27.26	28.41	2.83	6	112	0.211	W
CR2	20191002	Sunny	Moderate	Mid-Flood	S	1	09:13	6.63	8.08	27.28	28.59	3.18	6	112	0.22	W
CR2	20191002	Sunny	Moderate	Mid-Flood	S	1	09:13	6.19	8.13	27.27	28.43	3.41	7	112	0.237	W
F1A	20191002	Sunny	Moderate	Mid-Flood	В	7.3	10:32	6.17	7.88	27.32	28.59	3.01	6	113	0.163	SW
F1A	20191002	Sunny	Moderate	Mid-Flood	В	7.3	10:32	6.57	7.9	27.32	28.62	2.87	6	112	0.18	W
F1A	20191002	Sunny	Moderate	Mid-Flood	М	4.15	10:33	6.57	7.91	27.32	28.71	2.86	6	113	0.223	SW
F1A	20191002	Sunny	Moderate	Mid-Flood	М	4.15	10:33	6.46	8.22	27.57	28.63	2.92	6	112	0.137	W
F1A	20191002	Sunny	Moderate	Mid-Flood	S	1	10:34	6.86	8.17	27.23	28.67	3.08	4	112	0.277	W
F1A	20191002	Sunny	Moderate	Mid-Flood	S	1	10:34	6.82	7.95	27.59	28.57	2.99	5	113	0.279	SW
H1	20191002	Sunny	Moderate	Mid-Flood	В	7.6	09:33	6.53	8.18	27.31	28.33	2.64	9	112	0.231	W
H1	20191002	Sunny	Moderate	Mid-Flood	В	7.6	09:33	6.23	8.27	27.33	28.71	2.57	8	112	0.198	W
H1	20191002	Sunny	Moderate	Mid-Flood	М	4.3	09:34	6.36	7.89	27.76	28.31	2.98	8	112	0.259	W
H1	20191002	Sunny	Moderate	Mid-Flood	М	4.3	09:34	6.42	8.16	27.66	28.58	2.81	9	112	0.196	W
H1	20191002	Sunny	Moderate	Mid-Flood	S	1	09:35	6.69	8	27.45	28.44	3.42	7	111	0.145	SW
H1	20191002	Sunny	Moderate	Mid-Flood	S	1	09:35	6.79	8.18	27.59	28.73	3.29	8	112	0.143	W
M1	20191002	Sunny	Moderate	Mid-Flood	В	6.4	10:32	6.45	7.94	27.45	28.88	2.8	5	113	0.244	W
M1	20191002	Sunny	Moderate	Mid-Flood	В	6.4	10:32	6.69	8.25	27.59	28.69	3.12	5	112	0.204	W
M1	20191002	Sunny	Moderate	Mid-Flood	М	3.7	10:33	6.83	8.07	27.51	28.53	3.21	4	112	0.22	NW
M1	20191002	Sunny	Moderate	Mid-Flood	М	3.7	10:33	6.41	8.25	27.31	28.7	3	4	112	0.128	SW
M1	20191002	Sunny	Moderate	Mid-Flood	S	1	10:34	6.17	7.9	27.47	28.59	3.12	4	113	0.193	SW
M1	20191002	Sunny	Moderate	Mid-Flood	S	1	10:34	6.44	7.94	27.36	28.85	3.25	5	112	0.221	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S1	20191002	Sunny	Moderate	Mid-Flood	В	4.2	09:10	6.71	8.04	27.7	28.38	2.72	7	113	0.237	SW
S1	20191002	Sunny	Moderate	Mid-Flood	В	4.2	09:10	6.74	8.22	27.64	28.42	3.07	7	113	0.169	W
S1	20191002	Sunny	Moderate	Mid-Flood	S	1	09:11	6.39	8.26	27.43	28.33	3.38	5	112	0.169	W
S1	20191002	Sunny	Moderate	Mid-Flood	S	1	09:11	6.45	8.1	27.38	28.63	3.44	5	112	0.234	NW
S2A	20191002	Sunny	Moderate	Mid-Flood	В	8.6	09:40	6.22	8.21	27.26	28.43	3.01	8	112	0.15	SW
S2A	20191002	Sunny	Moderate	Mid-Flood	В	8.6	09:40	6.44	8.26	27.29	28.6	3.02	9	113	0.234	W
S2A	20191002	Sunny	Moderate	Mid-Flood	М	4.8	09:41	6.72	8.26	27.8	28.46	2.89	6	112	0.152	W
S2A	20191002	Sunny	Moderate	Mid-Flood	М	4.8	09:41	6.41	8.02	27.72	28.79	2.79	7	113	0.224	NW
S2A	20191002	Sunny	Moderate	Mid-Flood	S	1	09:42	6.46	8.29	27.34	28.62	2.93	7	112	0.13	W
S2A	20191002	Sunny	Moderate	Mid-Flood	S	1	09:42	6.22	8.29	27.38	28.36	3.21	6	113	0.127	SW
S3	20191002	Sunny	Moderate	Mid-Flood	В	9	08:59	6.85	8.06	27.41	28.75	2.88	10	112	0.198	W
S3	20191002	Sunny	Moderate	Mid-Flood	В	9	08:59	6.53	7.89	27.25	28.73	2.75	10	112	0.146	W
S3	20191002	Sunny	Moderate	Mid-Flood	М	5	09:00	6.64	7.86	27.83	28.54	2.92	9	112	0.162	NW
S3	20191002	Sunny	Moderate	Mid-Flood	М	5	09:00	6.37	7.97	27.61	28.27	2.8	9	112	0.174	W
S3	20191002	Sunny	Moderate	Mid-Flood	S	1	09:01	6.23	7.92	27.8	28.56	3.09	8	112	0.205	W
S3	20191002	Sunny	Moderate	Mid-Flood	S	1	09:01	6.15	8.2	27.67	28.43	3.18	9	113	0.125	W
B1	20191002	Sunny	Moderate	Mid-Ebb	В	3.9	13:38	5.99	7.9	27.68	29.23	2.85	5	113	0.158	S
B1	20191002	Sunny	Moderate	Mid-Ebb	В	3.9	13:38	6.26	8.09	27.54	29.41	2.83	5	113	0.153	E
B1	20191002	Sunny	Moderate	Mid-Ebb	S	1	13:39	6.34	8.05	27.78	29.58	2.92	6	112	0.13	E
B1	20191002	Sunny	Moderate	Mid-Ebb	S	1	13:39	5.95	8.16	27.9	29.57	2.89	5	112	0.086	SE
B2	20191002	Sunny	Moderate	Mid-Ebb	В	4	14:10	6.43	7.89	27.88	29.35	2.68	7	112	0.097	S
B2	20191002	Sunny	Moderate	Mid-Ebb	В	4	14:10	6.59	7.9	27.69	29.74	2.92	6	112	0.131	SE
B2	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:11	6.28	8.2	27.65	29.72	3.06	4	112	0.082	SE
B2	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:11	6.03	8.15	27.62	29.37	2.78	4	113	0.148	E
В3	20191002	Sunny	Moderate	Mid-Ebb	В	3.8	14:51	6.72	8.19	27.64	29.64	2.61	6	112	0.133	S
В3	20191002	Sunny	Moderate	Mid-Ebb	В	3.8	14:51	6.72	8.15	27.61	29.35	2.78	6	112	0.108	S
В3	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:52	6.78	8	27.82	29.71	2.95	5	113	0.086	S
В3	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:52	6.63	8.09	27.65	29.49	2.99	6	112	0.156	SE
B4	20191002	Sunny	Moderate	Mid-Ebb	В	3.4	15:01	6.36	8.15	27.75	29.67	3.08	7	112	0.143	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B4	20191002	Sunny	Moderate	Mid-Ebb	В	3.4	15:01	6.41	7.92	27.65	29.33	2.55	8	113	0.132	SE
B4	20191002	Sunny	Moderate	Mid-Ebb	S	1	15:02	6.74	8.16	27.75	29.56	2.78	5	113	0.228	SE
B4	20191002	Sunny	Moderate	Mid-Ebb	S	1	15:02	6.62	7.87	27.75	29.45	3.18	4	112	0.094	SE
C1A	20191002	Sunny	Moderate	Mid-Ebb	В	8.3	13:08	5.95	8.06	27.77	29.22	2.82	8	112	0.101	E
C1A	20191002	Sunny	Moderate	Mid-Ebb	В	8.3	13:08	6.16	8.07	27.88	29.35	2.56	7	112	0.159	SE
C1A	20191002	Sunny	Moderate	Mid-Ebb	М	4.65	13:09	6.47	8.01	27.59	29.39	3.15	8	113	0.102	SE
C1A	20191002	Sunny	Moderate	Mid-Ebb	М	4.65	13:09	6.63	8.18	27.53	29.38	3.07	7	114	0.115	S
C1A	20191002	Sunny	Moderate	Mid-Ebb	S	1	13:10	6.43	7.89	27.57	29.34	3.16	7	113	0.156	SE
C1A	20191002	Sunny	Moderate	Mid-Ebb	S	1	13:10	6.24	7.99	27.51	29.49	3.31	8	113	0.175	SE
C2A	20191002	Sunny	Moderate	Mid-Ebb	В	10.9	13:18	6.02	7.98	27.58	29.22	2.9	7	113	0.239	S
C2A	20191002	Sunny	Moderate	Mid-Ebb	В	10.9	13:18	6.8	7.87	27.65	29.59	2.79	6	112	0.176	E
C2A	20191002	Sunny	Moderate	Mid-Ebb	М	5.95	13:19	6.45	7.92	27.59	29.3	2.97	7	113	0.203	S
C2A	20191002	Sunny	Moderate	Mid-Ebb	М	5.95	13:19	6.82	8.08	27.52	29.4	3.01	6	112	0.212	E
C2A	20191002	Sunny	Moderate	Mid-Ebb	S	1	13:20	5.95	8.01	27.79	29.59	3.11	6	113	0.17	SE
C2A	20191002	Sunny	Moderate	Mid-Ebb	S	1	13:20	5.93	7.86	27.7	29.5	3.28	5	112	0.196	S
CR1	20191002	Sunny	Moderate	Mid-Ebb	В	11.4	13:37	6.25	7.94	27.72	29.52	3.08	7	112	0.22	E
CR1	20191002	Sunny	Moderate	Mid-Ebb	В	11.4	13:37	6.59	8.05	27.83	29.37	2.91	7	112	0.225	SE
CR1	20191002	Sunny	Moderate	Mid-Ebb	М	6.2	13:38	6.24	7.97	27.56	29.59	3.22	6	113	0.213	SE
CR1	20191002	Sunny	Moderate	Mid-Ebb	М	6.2	13:38	5.94	8.1	27.74	29.54	3.22	7	112	0.224	SE
CR1	20191002	Sunny	Moderate	Mid-Ebb	S	1	13:39	6.17	8.05	27.63	29.48	2.86	6	112	0.122	SE
CR1	20191002	Sunny	Moderate	Mid-Ebb	S	1	13:39	6.25	8.1	27.53	29.45	2.79	6	115	0.251	SE
CR2	20191002	Sunny	Moderate	Mid-Ebb	В	10.1	14:10	6.43	8.16	27.68	29.47	2.7	8	113	0.102	E
CR2	20191002	Sunny	Moderate	Mid-Ebb	В	10.1	14:10	6.15	8.2	27.65	29.69	2.58	7	112	0.183	SE
CR2	20191002	Sunny	Moderate	Mid-Ebb	М	5.55	14:11	6.43	7.89	27.62	29.47	2.86	7	112	0.102	S
CR2	20191002	Sunny	Moderate	Mid-Ebb	М	5.55	14:11	6.82	8.05	27.51	29.5	2.92	7	113	0.171	S
CR2	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:12	6.68	7.87	27.64	29.48	3.36	6	111	0.137	SE
CR2	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:12	6.69	8.21	27.82	29.51	3.15	6	113	0.105	S
F1A	20191002	Sunny	Moderate	Mid-Ebb	В	7.8	15:21	6.26	8.08	27.58	29.46	2.83	11	110	0.158	S
F1A	20191002	Sunny	Moderate	Mid-Ebb	В	7.8	15:21	6.11	8.01	27.53	29.57	2.9	10	108	0.204	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
F1A	20191002	Sunny	Moderate	Mid-Ebb	М	4.4	15:22	6.07	8.21	27.51	29.55	2.71	7	110	0.109	SE
F1A	20191002	Sunny	Moderate	Mid-Ebb	М	4.4	15:22	6.69	7.92	27.5	29.31	2.83	8	111	0.197	E
F1A	20191002	Sunny	Moderate	Mid-Ebb	S	1	15:23	6.08	8.05	27.76	29.7	3.34	6	112	0.225	SE
F1A	20191002	Sunny	Moderate	Mid-Ebb	S	1	15:23	6.5	8.07	27.65	29.57	3	6	113	0.225	Е
H1	20191002	Sunny	Moderate	Mid-Ebb	В	7.4	14:30	6.46	7.94	27.89	29.53	2.9	8	112	0.15	E
H1	20191002	Sunny	Moderate	Mid-Ebb	В	7.4	14:30	6.17	8.23	27.78	29.42	2.75	7	113	0.135	S
H1	20191002	Sunny	Moderate	Mid-Ebb	М	4.2	14:31	6.55	8.17	27.89	29.6	3.07	7	113	0.202	S
H1	20191002	Sunny	Moderate	Mid-Ebb	М	4.2	14:31	6.48	8.14	27.59	29.57	3.01	8	113	0.144	S
H1	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:32	6.52	8.11	27.76	29.47	3.32	6	112	0.115	SE
H1	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:32	6.7	8.16	27.79	29.47	3.11	6	113	0.146	S
M1	20191002	Sunny	Moderate	Mid-Ebb	В	8.2	15:33	6.85	7.89	27.63	29.57	2.83	8	112	0.094	SE
M1	20191002	Sunny	Moderate	Mid-Ebb	В	8.2	15:33	6.82	7.86	27.78	29.63	2.76	8	112	0.082	S
M1	20191002	Sunny	Moderate	Mid-Ebb	М	4.6	15:34	6.02	7.89	27.83	29.62	2.87	7	113	0.078	S
M1	20191002	Sunny	Moderate	Mid-Ebb	М	4.6	15:34	6.09	8.06	27.87	29.54	2.71	6	113	0.096	S
M1	20191002	Sunny	Moderate	Mid-Ebb	S	1	15:35	6.1	7.94	27.68	29.67	3.08	6	112	0.175	E
M1	20191002	Sunny	Moderate	Mid-Ebb	S	1	15:35	6.79	8.13	27.79	29.54	3.25	6	114	0.143	E
S1	20191002	Sunny	Moderate	Mid-Ebb	В	4	14:01	6.63	7.92	27.61	29.64	2.88	6	110	0.229	SE
S1	20191002	Sunny	Moderate	Mid-Ebb	В	4	14:01	6.4	8.1	27.54	29.48	2.74	5	112	0.095	Е
S1	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:02	6.21	8.16	27.9	29.59	2.8	6	110	0.244	E
S1	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:02	6.65	8	27.66	29.43	3.02	5	109	0.131	S
S2A	20191002	Sunny	Moderate	Mid-Ebb	В	8.2	14:22	5.92	7.88	27.79	29.47	2.86	5	114	0.209	S
S2A	20191002	Sunny	Moderate	Mid-Ebb	В	8.2	14:22	6.37	7.92	27.82	29.47	3.05	6	111	0.138	Е
S2A	20191002	Sunny	Moderate	Mid-Ebb	М	4.6	14:23	6.53	7.87	27.85	29.54	2.95	6	110	0.213	S
S2A	20191002	Sunny	Moderate	Mid-Ebb	М	4.6	14:23	6.31	8.15	27.73	29.54	2.92	5	111	0.237	S
S2A	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:24	5.98	8.06	27.59	29.58	3.18	5	109	0.218	SE
S2A	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:24	6.22	8.2	27.63	29.61	2.86	6	110	0.134	S
S3	20191002		Moderate	Mid-Ebb	В	10.5	13:58	6.51	7.96	27.67	29.6	2.55	6	113	0.165	SE
S3	20191002	Sunny	Moderate	Mid-Ebb	В	10.5	13:58	6.84	8.18	27.88	29.55	2.94	7	113	0.088	S
S3	20191002	Sunny	Moderate	Mid-Ebb	М	5.75	13:59	6.2	8.12	27.7	29.49	2.86	7	113	0.24	S

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S3	20191002	Sunny	Moderate	Mid-Ebb	М	5.75	13:59	6.36	8.2	27.57	29.45	3.13	6	113	0.207	SE
S3	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:00	6.5	8.2	27.9	29.53	3.19	6	112	0.077	SE
S3	20191002	Sunny	Moderate	Mid-Ebb	S	1	14:00	6.82	7.9	27.66	29.55	2.97	5	115	0.098	SE
B1	20191004	Sunny	Moderate	Mid-Flood	В	4.6	10:12	6.2	8.32	27.84	28.81	2.89	7	111	0.29	W
B1	20191004	Sunny	Moderate	Mid-Flood	В	4.6	10:12	6.48	8.25	27.92	29.02	3.34	7	110	0.257	SW
B1	20191004	Sunny	Moderate	Mid-Flood	S	1	10:13	6.8	8.15	28.44	28.97	2.5	6	110	0.277	W
B1	20191004	Sunny	Moderate	Mid-Flood	S	1	10:13	6.18	8.16	28.01	29.06	2.57	6	111	0.141	NW
B2	20191004	Sunny	Moderate	Mid-Flood	В	4.1	10:33	6.32	8.3	27.81	29.1	2.98	7	111	0.259	W
B2	20191004	Sunny	Moderate	Mid-Flood	В	4.1	10:33	6.62	8.37	28.36	29.09	3.32	7	110	0.204	W
B2	20191004	Sunny	Moderate	Mid-Flood	S	1	10:34	6.96	8.11	28.21	29.05	2.84	5	111	0.282	W
B2	20191004	Sunny	Moderate	Mid-Flood	S	1	10:34	6.2	8.09	28.03	29.18	2.61	6	110	0.174	W
В3	20191004	Sunny	Moderate	Mid-Flood	В	3.9	10:20	6.71	8.35	27.96	29.09	3.43	6	111	0.246	NW
В3	20191004	Sunny	Moderate	Mid-Flood	В	3.9	10:20	6.19	8.15	28.26	29.17	3.6	6	110	0.251	SW
В3	20191004	Sunny	Moderate	Mid-Flood	S	1	10:21	6.78	8.13	28.07	28.95	2.85	6	110	0.193	W
В3	20191004	Sunny	Moderate	Mid-Flood	S	1	10:21	6.26	7.97	27.73	29.17	2.86	7	110	0.288	SW
B4	20191004	Sunny	Moderate	Mid-Flood	В	3.6	10:32	6.32	8.25	28.16	29.1	3.18	8	110	0.252	W
B4	20191004	Sunny	Moderate	Mid-Flood	В	3.6	10:32	6.39	8.46	27.82	28.96	3.16	9	110	0.24	W
B4	20191004	Sunny	Moderate	Mid-Flood	S	1	10:33	7.01	8.33	28.36	28.91	2.68	7	110	0.278	W
B4	20191004	Sunny	Moderate	Mid-Flood	S	1	10:33	7.03	7.98	27.96	28.94	2.43	8	110	0.288	NW
C1A	20191004	Sunny	Moderate	Mid-Flood	В	10.8	09:45	6.64	8.24	27.81	28.95	3.33	9	109	0.183	W
C1A	20191004	Sunny	Moderate	Mid-Flood	В	10.8	09:45	6.51	8.17	28.36	28.8	3.04	9	112	0.138	W
C1A	20191004	Sunny	Moderate	Mid-Flood	М	5.9	09:46	6.57	8.13	27.71	28.85	2.62	7	110	0.191	NW
C1A	20191004	Sunny	Moderate	Mid-Flood	М	5.9	09:46	6.66	8.41	27.77	29.07	2.74	8	110	0.192	W
C1A	20191004	Sunny	Moderate	Mid-Flood	S	1	09:47	6.41	8.06	27.92	28.81	2.76	7	110	0.136	NW
C1A	20191004	Sunny	Moderate	Mid-Flood	S	1	09:47	6.18	7.98	28.21	28.9	2.7	6	111	0.166	W
C2A	20191004	Sunny	Moderate	Mid-Flood	В	10.9	09:17	6.54	8.22	28.02	28.61	3.35	6	110	0.157	NW
C2A	20191004	Sunny	Moderate	Mid-Flood	В	10.9	09:17	6.53	8.01	27.94	28.72	3.46	6	111	0.169	SW
C2A	20191004	Sunny	Moderate	Mid-Flood	М	5.95	09:18	6.45	8.05	27.87	28.58	2.7	5	109	0.221	SW
C2A	20191004	Sunny	Moderate	Mid-Flood	М	5.95	09:18	6.91	8.23	27.86	28.5	3.06	6	109	0.225	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C2A	20191004	Sunny	Moderate	Mid-Flood	S	1	09:19	6.27	8.28	27.81	28.52	2.64	5	108	0.151	W
C2A	20191004	Sunny	Moderate	Mid-Flood	S	1	09:19	6.59	8.14	28.12	28.87	2.74	4	108	0.156	W
CR1	20191004	Sunny	Moderate	Mid-Flood	В	11.6	09:39	6.58	8.08	28.33	29.06	3.17	9	112	0.16	SW
CR1	20191004	Sunny	Moderate	Mid-Flood	В	11.6	09:39	6.38	7.98	28.37	29.02	3.39	8	110	0.219	NW
CR1	20191004	Sunny	Moderate	Mid-Flood	М	6.3	09:40	6.41	7.98	27.91	28.83	2.99	11	111	0.258	SW
CR1	20191004	Sunny	Moderate	Mid-Flood	М	6.3	09:40	6.42	8.46	27.71	28.89	3.13	10	111	0.125	SW
CR1	20191004	Sunny	Moderate	Mid-Flood	S	1	09:41	6.95	8.46	28.4	28.95	3.04	10	110	0.236	W
CR1	20191004	Sunny	Moderate	Mid-Flood	S	1	09:41	6.33	8.09	28.42	28.96	2.83	8	111	0.159	NW
CR2	20191004	Sunny	Moderate	Mid-Flood	В	9.7	11:20	6.98	8.29	28.34	29.23	3.3	7	111	0.236	W
CR2	20191004	Sunny	Moderate	Mid-Flood	В	9.7	11:20	6.17	8	28.07	29.15	3.55	7	112	0.268	NW
CR2	20191004	Sunny	Moderate	Mid-Flood	М	5.35	11:21	6.47	8.38	28.09	29.31	3.25	6	112	0.219	W
CR2	20191004	Sunny	Moderate	Mid-Flood	М	5.35	11:21	6.4	8.06	28.37	29.24	3.15	6	112	0.152	W
CR2	20191004	Sunny	Moderate	Mid-Flood	S	1	11:22	6.26	8.43	28.14	29.19	2.91	6	110	0.199	W
CR2	20191004	Sunny	Moderate	Mid-Flood	S	1	11:22	6.88	8.47	27.91	29.23	2.7	5	110	0.254	W
F1A	20191004	Sunny	Moderate	Mid-Flood	В	7.2	11:01	6.81	8.18	28.14	29.21	3.32	7	109	0.163	W
F1A	20191004	Sunny	Moderate	Mid-Flood	В	7.2	11:01	6.87	8.14	27.76	29.05	3.09	6	108	0.175	SW
F1A	20191004	Sunny	Moderate	Mid-Flood	М	4.1	11:02	6.73	8.06	28.15	29.03	3.07	6	109	0.29	W
F1A	20191004	Sunny	Moderate	Mid-Flood	М	4.1	11:02	7.04	8.07	27.93	29.15	2.64	7	110	0.235	SW
F1A	20191004	Sunny	Moderate	Mid-Flood	S	1	11:03	6.83	8.15	28.45	29.15	2.57	6	109	0.18	NW
F1A	20191004	Sunny	Moderate	Mid-Flood	S	1	11:03	6.83	8.17	28.31	29.02	2.44	6	109	0.134	SW
H1	20191004	Sunny	Moderate	Mid-Flood	В	6.5	09:59	6.71	8.02	28.31	28.93	2.98	7	111	0.235	NW
H1	20191004	Sunny	Moderate	Mid-Flood	В	6.5	09:59	7.07	8.3	27.79	28.98	3.14	8	110	0.222	W
H1	20191004	Sunny	Moderate	Mid-Flood	М	3.75	10:00	6.77	8.31	28.24	28.88	2.63	7	111	0.199	W
H1	20191004	Sunny	Moderate	Mid-Flood	М	3.75	10:00	6.72	8.04	28.18	28.84	2.59	8	112	0.202	W
H1	20191004	Sunny	Moderate	Mid-Flood	S	1	10:01	6.92	8.27	27.78	28.95	2.58	6	111	0.253	W
H1	20191004	Sunny	Moderate	Mid-Flood	S	1	10:01	6.63	8.08	27.77	28.89	2.57	7	110	0.185	W
M1	20191004	Sunny	Moderate	Mid-Flood	В	7.4	11:37	6.24	8.41	27.89	29.21	2.98	6	111	0.288	W
M1	20191004	Sunny	Moderate	Mid-Flood	В	7.4	11:37	6.24	8.45	27.76	29.26	2.97	7	112	0.252	W
M1	20191004	Sunny	Moderate	Mid-Flood	М	4.2	11:38	6.15	8.46	28.03	29.29	2.66	5	111	0.23	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
M1	20191004	Sunny	Moderate	Mid-Flood	М	4.2	11:38	6.75	8.18	28.22	29.31	2.84	6	110	0.234	W
M1	20191004	Sunny	Moderate	Mid-Flood	S	1	11:39	6.85	8.3	28	29.31	2.89	5	111	0.142	SW
M1	20191004	Sunny	Moderate	Mid-Flood	S	1	11:39	6.61	8.34	27.9	29.21	2.73	5	110	0.289	NW
S1	20191004	Sunny	Moderate	Mid-Flood	В	4.4	10:23	6.17	8.07	28.23	28.9	2.95	6	110	0.231	W
S1	20191004	Sunny	Moderate	Mid-Flood	В	4.4	10:23	6.99	7.96	28.02	29	2.92	7	107	0.255	W
S1	20191004	Sunny	Moderate	Mid-Flood	S	1	10:24	6.43	8.2	27.87	29.04	2.44	6	110	0.269	W
S1	20191004	Sunny	Moderate	Mid-Flood	S	1	10:24	6.8	8.37	28.37	29.07	2.51	5	108	0.243	NW
S2A	20191004	Sunny	Moderate	Mid-Flood	В	8.7	10:54	7.02	8.3	27.8	28.97	3.37	7	110	0.256	W
S2A	20191004	Sunny	Moderate	Mid-Flood	В	8.7	10:54	6.88	8.23	28.12	29.13	3.05	7	108	0.287	SW
S2A	20191004	Sunny	Moderate	Mid-Flood	М	4.85	10:55	6.9	8.2	27.9	28.91	2.69	5	108	0.141	W
S2A	20191004	Sunny	Moderate	Mid-Flood	М	4.85	10:55	6.55	8.13	28.44	29	2.94	6	108	0.204	SW
S2A	20191004	Sunny	Moderate	Mid-Flood	S	1	10:56	7	8.35	27.97	29.14	2.78	6	109	0.124	NW
S2A	20191004	Sunny	Moderate	Mid-Flood	S	1	10:56	6.83	8.01	28.27	28.96	2.84	5	110	0.191	W
S3	20191004	Sunny	Moderate	Mid-Flood	В	8.4	11:32	6.8	7.97	28.25	29.15	3.62	8	110	0.255	W
S3	20191004	Sunny	Moderate	Mid-Flood	В	8.4	11:32	6.96	7.97	28.01	29.23	3.9	7	110	0.171	W
S3	20191004	Sunny	Moderate	Mid-Flood	М	4.7	11:33	6.74	8.25	27.84	29.22	2.95	8	109	0.272	NW
S3	20191004	Sunny	Moderate	Mid-Flood	М	4.7	11:33	6.24	8.49	27.81	29.27	2.97	8	110	0.195	W
S3	20191004	Sunny	Moderate	Mid-Flood	S	1	11:34	6.51	8.33	27.8	29.08	2.81	4	110	0.147	W
S3	20191004	Sunny	Moderate	Mid-Flood	S	1	11:34	7.01	7.97	28.39	29.29	2.84	5	108	0.197	NW
B1	20191004	Sunny	Moderate	Mid-Ebb	В	3.6	15:13	6.92	8.19	27.95	29.25	3.07	8	110	0.194	SE
B1	20191004	Sunny	Moderate	Mid-Ebb	В	3.6	15:13	6.88	8.22	27.93	29.52	3.06	9	111	0.161	SE
B1	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:14	6.45	7.93	28	29.36	2.46	8	110	0.105	E
B1	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:14	6.23	8.12	28.25	29.63	2.87	8	110	0.152	SE
B2	20191004	Sunny	Moderate	Mid-Ebb	В	4.5	15:34	6.28	7.99	28.18	29.59	3.1	7	110	0.226	E
B2	20191004	Sunny	Moderate	Mid-Ebb	В	4.5	15:34	6.82	8.24	28.05	29.43	3.3	6	110	0.148	S
B2	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:35	6.8	7.94	28.04	29.34	2.98	6	110	0.103	E
B2	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:35	6.69	8.12	28.13	29.62	2.66	7	111	0.182	S
В3	20191004	Sunny	Moderate	Mid-Ebb	В	3.4	16:04	6.86	8.13	28.02	29.14	3.53	9	111	0.165	E
В3	20191004	Sunny	Moderate	Mid-Ebb	В	3.4	16:04	6.47	7.99	28.16	29.43	3.28	8	111	0.086	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
В3	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:05	6.09	8.01	27.87	29.34	2.63	4	111	0.189	S
В3	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:05	6.52	8.11	28.16	29.22	2.84	5	111	0.189	S
B4	20191004	Sunny	Moderate	Mid-Ebb	В	3.9	16:15	6.05	8.16	28.07	29.55	3.25	7	111	0.17	E
B4	20191004	Sunny	Moderate	Mid-Ebb	В	3.9	16:15	6.38	8.17	27.89	29.16	3.41	7	111	0.145	S
B4	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:16	6.11	7.98	27.98	29.45	2.65	6	110	0.239	SE
B4	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:16	6.67	8.18	27.89	29.12	2.84	5	111	0.096	S
C1A	20191004	Sunny	Moderate	Mid-Ebb	В	8.8	14:48	6.41	8.07	27.87	29.43	3.52	6	111	0.119	S
C1A	20191004	Sunny	Moderate	Mid-Ebb	В	8.8	14:48	6.53	8.09	28.13	29.53	3.04	6	110	0.252	S
C1A	20191004	Sunny	Moderate	Mid-Ebb	М	4.9	14:49	6.89	7.98	28.25	29.37	2.51	6	111	0.12	E
C1A	20191004	Sunny	Moderate	Mid-Ebb	М	4.9	14:49	6.18	8.06	28.08	29.54	2.8	6	111	0.227	SE
C1A	20191004	Sunny	Moderate	Mid-Ebb	S	1	14:50	6.46	7.88	28.26	29.66	3.01	7	111	0.172	S
C1A	20191004	Sunny	Moderate	Mid-Ebb	S	1	14:50	6.59	8.24	27.96	29.63	2.83	6	112	0.109	E
C2A	20191004	Sunny	Moderate	Mid-Ebb	В	11.3	14:58	6.47	7.87	28.2	29.46	3.04	7	110	0.163	SE
C2A	20191004	Sunny	Moderate	Mid-Ebb	В	11.3	14:58	6.46	8.15	28.01	29.43	3.16	7	110	0.237	SE
C2A	20191004	Sunny	Moderate	Mid-Ebb	М	6.15	14:59	6.53	8.16	28.09	29.59	3.05	7	110	0.14	E
C2A	20191004	Sunny	Moderate	Mid-Ebb	М	6.15	14:59	6.78	8.02	28.23	29.56	2.79	8	110	0.176	E
C2A	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:00	6.77	7.87	28.07	29.48	2.7	7	110	0.239	SE
C2A	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:00	6.82	8	27.86	29.56	2.97	8	111	0.209	SE
CR1	20191004	Sunny	Moderate	Mid-Ebb	В	12.3	15:21	6.06	8.23	28.2	29.29	3.5	7	111	0.115	S
CR1	20191004	Sunny	Moderate	Mid-Ebb	В	12.3	15:21	6.33	8.17	28.25	29.41	3.7	8	111	0.239	SE
CR1	20191004	Sunny	Moderate	Mid-Ebb	М	6.65	15:22	6.72	7.95	28.19	29.3	3.35	9	111	0.078	E
CR1	20191004	Sunny	Moderate	Mid-Ebb	М	6.65	15:22	6.26	8.15	28.01	29.49	2.86	8	111	0.133	SE
CR1	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:23	6.27	7.99	28.07	29.38	3.17	8	112	0.107	E
CR1	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:23	6.71	8.15	27.94	29.62	3.1	9	111	0.17	SE
CR2	20191004	Sunny	Moderate	Mid-Ebb	В	11.3	16:21	6.71	7.99	28.11	29.41	4.49	14	111	0.222	S
CR2	20191004	Sunny	Moderate	Mid-Ebb	В	11.3	16:21	6.63	7.91	27.99	29.36	4.53	15	111	0.114	
CR2	20191004	Sunny	Moderate	Mid-Ebb	М	6.15	16:22	6.45	8.19	28.06	29.39	3.51	15	110	0.164	SE
CR2	20191004	Sunny	Moderate	Mid-Ebb	М	6.15	16:22	6.96	8.09	27.94	29.21	3.46	14	110	0.197	SE
CR2	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:23	6.09	7.99	27.86	29.32	3.74	11	111	0.117	S

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR2	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:23	6.26	8.12	28	29.13	3.85	12	110	0.151	SE
F1A	20191004	Sunny	Moderate	Mid-Ebb	В	7.2	16:48	6.35	8.21	27.96	29.22	3.49	6	111	0.2	E
F1A	20191004	Sunny	Moderate	Mid-Ebb	В	7.2	16:48	6.27	8.15	27.81	29.18	3.57	6	111	0.183	S
F1A	20191004	Sunny	Moderate	Mid-Ebb	М	4.1	16:49	6.17	8.08	27.96	29.18	2.91	7	111	0.102	S
F1A	20191004	Sunny	Moderate	Mid-Ebb	М	4.1	16:49	6.62	8.19	28.17	29.38	2.58	6	110	0.093	SE
F1A	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:50	6.75	8.18	27.99	29.42	2.55	7	110	0.227	SE
F1A	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:50	6.14	7.92	28.02	29.25	2.63	7	111	0.164	SE
H1	20191004	Sunny	Moderate	Mid-Ebb	В	7	15:42	6.51	8.03	28.27	29.33	3.44	6	111	0.157	S
H1	20191004	Sunny	Moderate	Mid-Ebb	В	7	15:42	6.67	7.98	28.04	29.55	3.08	5	111	0.169	S
H1	20191004	Sunny	Moderate	Mid-Ebb	М	4	15:43	6.35	8.18	28.02	29.33	2.98	6	111	0.135	SE
H1	20191004	Sunny	Moderate	Mid-Ebb	М	4	15:43	6.38	8.11	28.15	29.48	3	7	110	0.203	S
H1	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:44	6.79	8.18	28.22	29.4	2.84	6	110	0.218	SE
H1	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:44	6.24	8.07	27.98	29.49	3.01	6	111	0.216	SE
M1	20191004	Sunny	Moderate	Mid-Ebb	В	8.7	17:23	6.36	8.18	27.98	29.23	3.15	13	110	0.252	S
M1	20191004	Sunny	Moderate	Mid-Ebb	В	8.7	17:23	6.3	8.16	28.06	29.01	3.6	12	110	0.2	SE
M1	20191004	Sunny	Moderate	Mid-Ebb	М	4.85	17:24	6.06	8.11	28.12	28.91	2.96	12	111	0.12	SE
M1	20191004	Sunny	Moderate	Mid-Ebb	М	4.85	17:24	6.76	7.86	28.1	29.12	2.71	11	111	0.114	SE
M1	20191004	Sunny	Moderate	Mid-Ebb	S	1	17:25	6.08	7.93	28.02	29.25	2.54	11	111	0.198	SE
M1	20191004	Sunny	Moderate	Mid-Ebb	S	1	17:25	6.76	8.11	27.96	29.12	2.65	12	111	0.179	E
S1	20191004	Sunny	Moderate	Mid-Ebb	В	4.2	15:24	6.98	7.91	28.21	29.36	3.1	7	112	0.133	SE
S1	20191004	Sunny	Moderate	Mid-Ebb	В	4.2	15:24	6.88	8.24	27.97	29.2	3.4	7	111	0.166	E
S1	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:25	6.14	8.2	27.86	29.31	2.69	5	112	0.157	S
S1	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:25	6.58	8.14	28.23	29.4	2.64	6	110	0.183	E
S2A	20191004	Sunny	Moderate	Mid-Ebb	В	8	15:55	6.53	8.22	28.01	29.48	3.21	8	111	0.171	SE
S2A	20191004	Sunny	Moderate	Mid-Ebb	В	8	15:55	6.05	7.93	28	29.24	3.56	9	111	0.187	SE
S2A	20191004	Sunny	Moderate	Mid-Ebb	М	4.5	15:56	6.82	7.89	27.95	29.3	2.52	7	111	0.162	SE
S2A	20191004	Sunny	Moderate	Mid-Ebb	М	4.5	15:56	6.45	8.12	27.99	29.14	2.78	7	111	0.125	SE
S2A	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:57	6.18	8.1	28.23	29.34	2.94	6	105	0.198	SE
S2A	20191004	Sunny	Moderate	Mid-Ebb	S	1	15:57	6.37	7.93	27.82	29.27	2.56	5	107	0.247	S

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S3	20191004	Sunny	Moderate	Mid-Ebb	В	9	16:33	6.7	7.95	28.12	29.26	4.07	10	111	0.181	E
S3	20191004	Sunny	Moderate	Mid-Ebb	В	9	16:33	6.21	7.99	28.27	29.2	4.58	11	111	0.111	S
S3	20191004	Sunny	Moderate	Mid-Ebb	М	5	16:34	6.61	7.96	27.96	29.23	3.93	8	112	0.208	E
S3	20191004	Sunny	Moderate	Mid-Ebb	М	5	16:34	6.29	8.04	28.1	29.38	3.63	8	112	0.147	S
S3	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:35	6.98	8.22	28.19	29.38	3.74	6	111	0.252	E
S3	20191004	Sunny	Moderate	Mid-Ebb	S	1	16:35	6.14	8.02	28.17	29.36	3.69	7	111	0.203	S
B1	20191008	Sunny	Moderate	Mid-Ebb	В	3.6	09:15	6.46	8.08	29.18	28.51	3.42	5	111	0.078	E
B1	20191008	Sunny	Moderate	Mid-Ebb	В	3.6	09:15	6.27	8.11	29.12	28.47	3.01	6	111	0.212	SE
B1	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:16	5.95	7.95	28.75	28.66	2.49	4	111	0.19	S
B1	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:16	6.4	7.94	29.1	28.43	2.68	4	111	0.141	S
B2	20191008	Sunny	Moderate	Mid-Ebb	В	4.4	09:36	6.34	8.14	29.16	28.65	3.32	5	113	0.236	E
B2	20191008	Sunny	Moderate	Mid-Ebb	В	4.4	09:36	6.14	7.91	28.72	28.6	2.89	5	111	0.087	S
B2	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:37	6.16	7.99	28.88	28.62	2.49	6	111	0.196	SE
B2	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:37	6.08	7.97	29.09	28.45	2.85	5	112	0.179	SE
В3	20191008	Sunny	Moderate	Mid-Ebb	В	3.8	10:14	6.11	8.06	29.14	28.54	3.13	7	111	0.127	SE
В3	20191008	Sunny	Moderate	Mid-Ebb	В	3.8	10:14	6.52	8.09	28.86	28.45	3.18	7	112	0.092	SE
В3	20191008	Sunny	Moderate	Mid-Ebb	S	1	10:15	6.11	8.01	28.89	28.65	2.57	6	110	0.122	S
В3	20191008	Sunny	Moderate	Mid-Ebb	S	1	10:15	6.31	8.06	28.96	28.59	2.89	5	112	0.083	S
B4	20191008	Sunny	Moderate	Mid-Ebb	В	4	10:24	6.38	7.88	29.12	28.61	3.29	5	111	0.233	S
B4	20191008	Sunny	Moderate	Mid-Ebb	В	4	10:24	6.55	7.94	28.81	28.66	3.12	5	110	0.086	E
B4	20191008	Sunny	Moderate	Mid-Ebb	S	1	10:25	5.9	8.08	29.11	28.49	2.75	5	111	0.152	S
B4	20191008	Sunny	Moderate	Mid-Ebb	S	1	10:25	5.95	8.07	28.76	28.43	2.78	5	111	0.162	E
C1A	20191008	Sunny	Moderate	Mid-Ebb	В	9.2	08:42	6.14	7.94	28.91	28.35	3.12	6	111	0.228	E
C1A	20191008	Sunny	Moderate	Mid-Ebb	В	9.2	08:42	6.5	7.97	29.18	28.48	2.96	7	111	0.13	S
C1A	20191008	Sunny	Moderate	Mid-Ebb	М	5.1	08:43	6.28	8.1	28.71	28.5	2.92	6	111	0.171	SE
C1A	20191008	Sunny	Moderate	Mid-Ebb	М	5.1	08:43	5.91	8.12	28.98	28.57	2.88	6	112	0.119	S
C1A	20191008	Sunny	Moderate	Mid-Ebb	S	1	08:44	5.92	8	28.71	28.55	2.41	6	110	0.113	SE
C1A	20191008	Sunny	Moderate	Mid-Ebb	S	1	08:44	6.03	8.08	29.1	28.38	2.69	6	111	0.078	E
C2A	20191008	Sunny	Moderate	Mid-Ebb	В	10.3	09:05	5.99	7.89	29.14	28.5	3.4	6	111	0.124	S

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C2A	20191008	Sunny	Moderate	Mid-Ebb	В	10.3	09:05	6	7.91	28.9	28.39	3.25	6	111	0.136	SE
C2A	20191008	Sunny	Moderate	Mid-Ebb	М	5.65	09:06	6.45	8.12	28.82	28.52	2.42	7	111	0.128	SE
C2A	20191008	Sunny	Moderate	Mid-Ebb	М	5.65	09:06	6.34	8.08	28.83	28.38	2.77	6	111	0.22	SE
C2A	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:07	6.21	7.9	28.92	28.34	2.57	7	111	0.158	E
C2A	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:07	5.98	8.14	29	28.3	2.58	6	111	0.094	E
CR1	20191008	Sunny	Moderate	Mid-Ebb	В	11.7	09:28	6.34	7.93	29.12	28.47	3.24	5	111	0.085	S
CR1	20191008	Sunny	Moderate	Mid-Ebb	В	11.7	09:28	5.95	7.89	28.84	28.52	3.38	4	110	0.105	SE
CR1	20191008	Sunny	Moderate	Mid-Ebb	М	6.35	09:29	6.18	7.98	28.72	28.51	3.12	4	111	0.099	SE
CR1	20191008	Sunny	Moderate	Mid-Ebb	М	6.35	09:29	6.08	8.05	28.99	28.43	3.15	5	111	0.205	S
CR1	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:30	6.44	8.11	28.8	28.42	2.7	5	111	0.096	S
CR1	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:30	6.56	8.02	28.88	28.41	2.84	5	111	0.076	SE
CR2	20191008	Sunny	Moderate	Mid-Ebb	В	11	09:56	6.35	8.09	29.19	28.55	4.28	5	111	0.151	E
CR2	20191008	Sunny	Moderate	Mid-Ebb	В	11	09:56	6.03	7.87	28.91	28.65	4.72	4	111	0.081	E
CR2	20191008	Sunny	Moderate	Mid-Ebb	М	6	09:57	5.87	8.05	28.83	28.56	3.83	4	110	0.23	S
CR2	20191008	Sunny	Moderate	Mid-Ebb	М	6	09:57	5.92	8.11	29.14	28.58	3.86	4	110	0.191	S
CR2	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:58	6.16	8.06	29.16	28.57	3.84	3	110	0.107	S
CR2	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:58	6.08	8.12	28.77	28.43	4.13	4	111	0.239	S
F1A	20191008	Sunny	Moderate	Mid-Ebb	В	7.5	11:00	6.38	8.01	29.17	28.78	2.89	6	111	0.085	SE
F1A	20191008	Sunny	Moderate	Mid-Ebb	В	7.5	11:00	6.18	7.91	29.15	28.81	3.33	6	111	0.183	SE
F1A	20191008	Sunny	Moderate	Mid-Ebb	М	4.25	11:01	6.49	8.05	28.85	28.87	2.88	7	111	0.153	S
F1A	20191008	Sunny	Moderate	Mid-Ebb	М	4.25	11:01	6.12	8.01	28.78	28.78	2.88	7	111	0.116	SE
F1A	20191008	Sunny	Moderate	Mid-Ebb	S	1	11:02	6.19	7.98	28.74	28.64	2.62	7	111	0.206	SE
F1A	20191008	Sunny	Moderate	Mid-Ebb	S	1	11:02	5.88	7.87	28.75	28.66	2.33	7	111	0.08	SE
H1	20191008	Sunny	Moderate	Mid-Ebb	В	7.9	10:10	6.38	7.93	28.93	28.49	3.21	5	110	0.213	SE
H1	20191008	Sunny	Moderate	Mid-Ebb	В	7.9	10:10	6.22	8.1	28.75	28.47	3.2	5	112	0.169	SE
H1	20191008	Sunny	Moderate	Mid-Ebb	М	4.45	10:11	6.58	8.01	28.74	28.47	2.76	5	111	0.136	E
H1	20191008	Sunny	Moderate	Mid-Ebb	М	4.45	10:11	6.42	7.92	29.1	28.62	2.43	5	111	0.115	SE
H1	20191008	Sunny	Moderate	Mid-Ebb	S	1	10:12	6.11	7.98	29.19	28.58	2.58	5	111	0.111	SE
H1	20191008	Sunny	Moderate	Mid-Ebb	S	1	10:12	6.25	8.03	28.84	28.44	2.36	5	111	0.218	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
M1	20191008	Sunny	Moderate	Mid-Ebb	В	8.4	11:35	6.33	8.08	28.85	28.64	3.05	3	111	0.098	SE
M1	20191008	Sunny	Moderate	Mid-Ebb	В	8.4	11:35	5.97	7.88	28.94	28.78	2.88	4	111	0.217	SE
M1	20191008	Sunny	Moderate	Mid-Ebb	М	4.7	11:36	6.32	7.89	28.81	28.87	2.52	4	111	0.145	S
M1	20191008	Sunny	Moderate	Mid-Ebb	М	4.7	11:36	6.48	7.92	29.01	28.72	2.45	3	110	0.17	E
M1	20191008	Sunny	Moderate	Mid-Ebb	S	1	11:37	6.52	7.87	28.84	28.69	2.55	3	111	0.206	E
M1	20191008	Sunny	Moderate	Mid-Ebb	S	1	11:37	5.9	7.87	29.19	28.63	2.66	4	111	0.126	SE
S1	20191008	Sunny	Moderate	Mid-Ebb	В	4.2	09:25	6.36	8.11	29.13	28.51	3.42	5	111	0.128	S
S1	20191008	Sunny	Moderate	Mid-Ebb	В	4.2	09:25	5.98	8.01	29.08	28.51	3.1	6	111	0.207	E
S1	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:26	5.96	7.86	28.72	28.46	2.68	6	110	0.175	SE
S1	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:26	6.19	8.13	29.07	28.66	2.38	5	111	0.118	SE
S2A	20191008	Sunny	Moderate	Mid-Ebb	В	8	09:53	6.09	8.08	28.78	28.6	3.32	5	112	0.186	SE
S2A	20191008	Sunny	Moderate	Mid-Ebb	В	8	09:53	5.91	8.04	28.87	28.47	3.39	5	110	0.166	S
S2A	20191008	Sunny	Moderate	Mid-Ebb	М	4.5	09:54	6.56	7.95	28.72	28.68	2.4	4	111	0.147	S
S2A	20191008	Sunny	Moderate	Mid-Ebb	М	4.5	09:54	6.09	7.92	28.77	28.54	2.89	4	110	0.251	S
S2A	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:55	6.31	8.08	28.79	28.48	2.83	4	111	0.173	S
S2A	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:55	5.98	7.91	28.9	28.46	2.32	4	110	0.245	S
S3	20191008	Sunny	Moderate	Mid-Ebb	В	9.8	09:45	6.2	7.92	28.87	28.45	4.49	5	111	0.15	S
S3	20191008	Sunny	Moderate	Mid-Ebb	В	9.8	09:45	6.37	8.11	28.87	28.5	4.62	6	112	0.147	SE
S3	20191008	Sunny	Moderate	Mid-Ebb	М	5.4	09:46	6.45	7.86	28.73	28.53	4.14	5	111	0.219	E
S3	20191008	Sunny	Moderate	Mid-Ebb	М	5.4	09:46	6.55	7.99	29.05	28.67	3.76	5	111	0.083	S
S3	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:47	6.06	8.04	28.84	28.52	3.84	6	111	0.167	S
S3	20191008	Sunny	Moderate	Mid-Ebb	S	1	09:47	6.37	7.91	29.1	28.52	3.8	6	111	0.186	SE
B1	20191008	Sunny	Moderate	Mid-Flood	В	3.6	15:16	6.58	8.18	28.8	28.94	3.2	3	111	0.213	NW
B1	20191008	Sunny	Moderate	Mid-Flood	В	3.6	15:16	6.11	7.94	28.86	28.73	3.29	4	112	0.253	SW
B1	20191008	Sunny	Moderate	Mid-Flood	S	1	15:17	6.42	8	29	28.9	2.62	3	111	0.233	NW
B1	20191008	Sunny	Moderate	Mid-Flood	S	1	15:17	6.61	7.97	28.75	28.88	2.51	3	111	0.179	W
B2	20191008	Sunny	Moderate	Mid-Flood	В	4.2	15:37	6.2	7.96	28.7	29.1	2.98	4	111	0.122	W
B2	20191008	Sunny	Moderate	Mid-Flood	В	4.2	15:37	6.26	7.99	29.13	28.73	3.12	4	111	0.18	NW
B2	20191008	Sunny	Moderate	Mid-Flood	S	1	15:38	6.05	7.93	29.08	29.02	2.39	3	111	0.148	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B2	20191008	Sunny	Moderate	Mid-Flood	S	1	15:38	6.19	8.12	29.2	28.9	2.48	3	112	0.254	W
В3	20191008	Sunny	Moderate	Mid-Flood	В	3.8	16:16	6.11	7.98	28.93	28.71	3.24	3	111	0.259	W
В3	20191008	Sunny	Moderate	Mid-Flood	В	3.8	16:16	6.24	7.91	28.89	28.88	3.51	4	112	0.147	SW
В3	20191008	Sunny	Moderate	Mid-Flood	S	1	16:17	6.41	8.01	28.95	29.02	2.59	3	111	0.291	W
В3	20191008	Sunny	Moderate	Mid-Flood	S	1	16:17	6.44	7.86	28.93	28.87	2.99	4	111	0.213	W
B4	20191008	Sunny	Moderate	Mid-Flood	В	3.5	16:26	6.57	8.08	29.12	28.93	3.37	3	111	0.224	SW
B4	20191008	Sunny	Moderate	Mid-Flood	В	3.5	16:26	6.25	7.88	29.07	28.88	3.08	3	112	0.177	W
B4	20191008	Sunny	Moderate	Mid-Flood	S	1	16:27	6.2	8.19	28.89	28.98	2.5	4	112	0.147	SW
B4	20191008	Sunny	Moderate	Mid-Flood	S	1	16:27	6.46	7.9	29.06	28.93	3	3	111	0.131	W
C1A	20191008	Sunny	Moderate	Mid-Flood	В	9.6	14:52	6.1	7.91	28.77	29.1	3.24	3	111	0.16	W
C1A	20191008	Sunny	Moderate	Mid-Flood	В	9.6	14:52	6.3	8.1	28.95	28.73	3.11	3	112	0.268	SW
C1A	20191008	Sunny	Moderate	Mid-Flood	М	5.3	14:53	6.34	8.05	29.14	28.73	2.55	2	111	0.127	W
C1A	20191008	Sunny	Moderate	Mid-Flood	М	5.3	14:53	6.27	7.89	29.2	28.93	2.93	3	112	0.205	W
C1A	20191008	Sunny	Moderate	Mid-Flood	S	1	14:54	6.47	8.18	28.81	29.08	2.61	3	112	0.259	W
C1A	20191008	Sunny	Moderate	Mid-Flood	S	1	14:54	6.54	8.1	28.73	28.82	2.8	2	112	0.28	NW
C2A	20191008	Sunny	Moderate	Mid-Flood	В	10.5	14:52	6.17	7.94	29.11	28.76	3.12	4	111	0.24	NW
C2A	20191008	Sunny	Moderate	Mid-Flood	В	10.5	14:52	6.48	8.17	29.13	28.91	3.3	5	112	0.287	W
C2A	20191008	Sunny	Moderate	Mid-Flood	М	5.75	14:53	6.02	8.08	28.94	28.95	2.82	4	111	0.252	W
C2A	20191008	Sunny	Moderate	Mid-Flood	М	5.75	14:53	6.02	8.17	29.02	28.85	2.82	4	111	0.235	W
C2A	20191008	Sunny	Moderate	Mid-Flood	S	1	14:54	6.05	8.13	29.13	29.06	2.72	3	112	0.258	NW
C2A	20191008	Sunny	Moderate	Mid-Flood	S	1	14:54	6.49	8	29.15	28.99	2.55	3	112	0.247	W
CR1	20191008	Sunny	Moderate	Mid-Flood	В	11.4	15:14	6.42	8.08	28.78	28.92	3.18	3	111	0.131	W
CR1	20191008	Sunny	Moderate	Mid-Flood	В	11.4	15:14	6.25	8.06	28.86	29.04	3.46	4	111	0.212	W
CR1	20191008	Sunny	Moderate	Mid-Flood	М	6.2	15:15	6.06	8.03	28.75	28.92	3.14	4	112	0.186	W
CR1	20191008	Sunny	Moderate	Mid-Flood	М	6.2	15:15	6.03	7.93	29.06	28.82	3.17	4	110	0.217	W
CR1	20191008	Sunny	Moderate	Mid-Flood	S	1	15:16	6.39	8	29.03	28.81	2.58	3	111	0.279	SW
CR1	20191008	Sunny	Moderate	Mid-Flood	S	1	15:16	6.38	8.08	28.73	29.09	2.93	4	111	0.195	W
CR2	20191008	Sunny	Moderate	Mid-Flood	В	10.1	15:47	6.37	7.97	28.89	28.86	4.21	4	111	0.235	W
CR2	20191008	Sunny	Moderate	Mid-Flood	В	10.1	15:47	6.45	8	28.7	29.08	3.75	4	112	0.275	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR2	20191008	Sunny	Moderate	Mid-Flood	М	5.55	15:48	6.37	7.92	28.83	29.07	3.41	3	112	0.129	W
CR2	20191008	Sunny	Moderate	Mid-Flood	М	5.55	15:48	6	7.94	28.95	29.02	3.56	3	111	0.255	NW
CR2	20191008	Sunny	Moderate	Mid-Flood	S	1	15:49	6.47	8.08	28.91	29.01	3.38	3	110	0.236	W
CR2	20191008	Sunny	Moderate	Mid-Flood	S	1	15:49	6.45	7.88	28.7	29.01	3.52	3	111	0.232	W
F1A	20191008	Sunny	Moderate	Mid-Flood	В	6.7	16:48	6.28	7.93	28.94	28.74	3.05	4	112	0.241	W
F1A	20191008	Sunny	Moderate	Mid-Flood	В	6.7	16:48	6.51	8.06	28.78	28.84	3.12	3	112	0.186	W
F1A	20191008	Sunny	Moderate	Mid-Flood	М	3.85	16:49	6.43	8.11	28.93	28.66	2.75	3	112	0.174	W
F1A	20191008	Sunny	Moderate	Mid-Flood	М	3.85	16:49	6.6	8.18	28.91	28.62	2.72	4	112	0.263	W
F1A	20191008	Sunny	Moderate	Mid-Flood	S	1	16:50	6.57	8.01	28.72	28.66	2.43	3	112	0.228	SW
F1A	20191008	Sunny	Moderate	Mid-Flood	S	1	16:50	6.07	8.18	29.04	29.01	2.73	4	112	0.198	W
H1	20191008	Sunny	Moderate	Mid-Flood	В	7.5	15:59	6.42	7.94	29.09	29.02	3.07	3	112	0.241	NW
H1	20191008	Sunny	Moderate	Mid-Flood	В	7.5	15:59	6.11	8.19	28.82	28.78	3.43	4	111	0.245	W
H1	20191008	Sunny	Moderate	Mid-Flood	М	4.25	16:00	6.18	7.93	28.92	29.02	3.1	3	112	0.124	NW
H1	20191008	Sunny	Moderate	Mid-Flood	М	4.25	16:00	5.96	8.1	28.91	29.06	2.69	3	111	0.129	W
H1	20191008	Sunny	Moderate	Mid-Flood	S	1	16:01	6.05	8.04	28.72	28.87	2.8	3	112	0.221	SW
H1	20191008	Sunny	Moderate	Mid-Flood	S	1	16:01	6.06	7.88	28.88	29	2.5	3	112	0.282	W
M1	20191008	Sunny	Moderate	Mid-Flood	В	7	17:17	6.22	7.92	28.74	28.66	3.22	4	111	0.156	NW
M1	20191008	Sunny	Moderate	Mid-Flood	В	7	17:17	6.14	8.05	29.17	28.55	3.41	5	112	0.269	W
M1	20191008	Sunny	Moderate	Mid-Flood	М	4	17:18	6.02	7.88	28.73	28.64	3.13	4	111	0.201	W
M1	20191008	Sunny	Moderate	Mid-Flood	М	4	17:18	6.07	7.96	29.02	28.53	2.79	5	111	0.122	SW
M1	20191008	Sunny	Moderate	Mid-Flood	S	1	17:19	6.35	7.95	29.2	28.66	2.85	4	110	0.193	SW
M1	20191008	Sunny	Moderate	Mid-Flood	S	1	17:19	5.98	8.18	29.08	28.68	2.78	4	112	0.184	NW
S1	20191008	Sunny	Moderate	Mid-Flood	В	4.5	15:26	6.51	8.19	28.93	28.79	3.15	4	111	0.187	W
S1	20191008	Sunny	Moderate	Mid-Flood	В	4.5	15:26	6.19	8.14	28.7	28.86	3.43	4	111	0.184	SW
S1	20191008	Sunny	Moderate	Mid-Flood	S	1	15:27	6.04	8.1	28.88	28.92	2.35	4	112	0.243	W
S1	20191008	Sunny	Moderate	Mid-Flood	S	1	15:27	6.23	7.96	28.97	28.93	2.68	5	111	0.273	W
S2A	20191008	Sunny	Moderate	Mid-Flood	В	8.8	15:56	6.24	7.98	29.03	28.8	2.88	6	111	0.246	W
S2A	20191008	Sunny	Moderate	Mid-Flood	В	8.8	15:56	6.09	7.95	29.17	29.09	3.07	5	111	0.263	NW
S2A	20191008	Sunny	Moderate	Mid-Flood	М	4.9	15:57	6.01	7.96	28.77	28.76	2.84	4	111	0.242	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S2A	20191008	Sunny	Moderate	Mid-Flood	М	4.9	15:57	6.48	8.02	29	28.97	2.81	5	111	0.182	W
S2A	20191008	Sunny	Moderate	Mid-Flood	S	1	15:58	6.59	8.07	28.82	28.86	2.61	5	111	0.155	W
S2A	20191008	Sunny	Moderate	Mid-Flood	S	1	15:58	6.37	8.06	28.97	28.72	2.91	4	110	0.194	W
S3	20191008	Sunny	Moderate	Mid-Flood	В	9.8	15:35	6.05	8.17	28.99	28.73	3.93	5	111	0.196	W
S3	20191008	Sunny	Moderate	Mid-Flood	В	9.8	15:35	6.2	8.08	29.1	28.9	4.27	5	110	0.278	W
S3	20191008	Sunny	Moderate	Mid-Flood	М	5.4	15:36	6.2	8.09	29.13	28.98	3.92	5	111	0.279	SW
S3	20191008	Sunny	Moderate	Mid-Flood	М	5.4	15:36	6.36	7.85	29.04	29.06	3.74	4	112	0.137	W
S3	20191008	Sunny	Moderate	Mid-Flood	S	1	15:37	6.42	8.03	28.78	28.98	3.35	4	111	0.273	NW
S3	20191008	Sunny	Moderate	Mid-Flood	S	1	15:37	6.01	8	29.1	29.06	3.58	5	111	0.212	SW
B1	20191010	Sunny	Moderate	Mid-Ebb	В	3.7	09:45	6.89	8.21	28.74	29.11	3.56	11	112	0.087	S
B1	20191010	Sunny	Moderate	Mid-Ebb	В	3.7	09:45	6.4	8.3	28.87	29.08	3.33	10	112	0.165	SE
B1	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:46	6.33	8.28	28.76	29.08	2.58	7	112	0.111	SE
B1	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:46	6.58	8.35	28.66	28.9	2.64	8	112	0.119	E
B2	20191010	Sunny	Moderate	Mid-Ebb	В	4.1	10:07	6.26	8.31	28.64	29.18	3.44	9	112	0.187	E
B2	20191010	Sunny	Moderate	Mid-Ebb	В	4.1	10:07	6.15	7.97	28.54	29.12	3.17	10	112	0.192	S
B2	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:08	6.02	8.31	28.69	29.18	2.73	8	112	0.247	S
B2	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:08	6.84	8.1	28.52	29.03	2.66	8	113	0.133	S
В3	20191010	Sunny	Moderate	Mid-Ebb	В	3.5	10:38	6.03	7.97	28.53	29.2	3.49	8	112	0.236	S
В3	20191010	Sunny	Moderate	Mid-Ebb	В	3.5	10:38	6.56	8.1	28.44	29.21	3.37	9	111	0.251	E
В3	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:39	6.09	8.22	28.45	29.24	2.96	7	112	0.226	S
В3	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:39	5.93	8.19	28.73	29.23	3.19	8	112	0.145	SE
B4	20191010	Sunny	Moderate	Mid-Ebb	В	3.6	10:48	6.56	8.19	28.89	29.22	3.29	5	112	0.122	S
B4	20191010	Sunny	Moderate	Mid-Ebb	В	3.6	10:48	6.41	8.04	28.51	29.06	3.78	6	112	0.252	E
B4	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:49	5.91	8.2	28.6	29.24	3.18	6	112	0.124	E
B4	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:49	5.96	8.21	28.89	29.1	3.2	6	112	0.219	S
C1A	20191010	Sunny	Moderate	Mid-Ebb	В	9.1	09:18	6.24	8.37	28.59	28.67	3.17	10	113	0.176	SE
C1A	20191010	Sunny	Moderate	Mid-Ebb	В	9.1	09:18	6.62	8.12	28.85	28.84	3.12	10	112	0.154	SE
C1A	20191010	Sunny	Moderate	Mid-Ebb	М	5.05	09:19	6.44	8.34	28.78	28.86	2.61	8	113	0.112	E
C1A	20191010	Sunny	Moderate	Mid-Ebb	М	5.05	09:19	6.6	8.06	28.88	28.84	2.96	8	112	0.18	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C1A	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:20	6.6	8.21	28.44	28.79	2.76	5	112	0.169	SE
C1A	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:20	6.74	8.28	28.68	28.76	3.07	6	113	0.08	S
C2A	20191010	Sunny	Moderate	Mid-Ebb	В	10.5	10:08	6.73	8.06	28.85	29.23	3.58	7	112	0.137	S
C2A	20191010	Sunny	Moderate	Mid-Ebb	В	10.5	10:08	6.84	8.19	28.62	29.13	3.59	8	113	0.2	SE
C2A	20191010	Sunny	Moderate	Mid-Ebb	М	5.75	10:09	5.88	8.21	28.86	29.1	3.13	8	112	0.158	S
C2A	20191010	Sunny	Moderate	Mid-Ebb	М	5.75	10:09	6.77	7.96	28.42	29.25	2.85	8	112	0.199	SE
C2A	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:10	6.43	8.33	28.48	29.06	2.93	7	112	0.167	S
C2A	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:10	6.38	8.37	28.84	29.16	2.67	6	112	0.216	S
CR1	20191010	Sunny	Moderate	Mid-Ebb	В	11.4	09:47	6.16	8.24	28.76	28.99	4.16	11	112	0.204	E
CR1	20191010	Sunny	Moderate	Mid-Ebb	В	11.4	09:47	6.21	8.11	28.87	29.09	4.19	11	112	0.207	SE
CR1	20191010	Sunny	Moderate	Mid-Ebb	М	6.2	09:48	6.67	7.96	28.52	28.95	3.56	11	112	0.164	SE
CR1	20191010	Sunny	Moderate	Mid-Ebb	М	6.2	09:48	6.69	8.19	28.82	28.97	3.21	10	109	0.212	SE
CR1	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:49	6.28	8.01	28.41	29.08	3.44	10	112	0.099	S
CR1	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:49	6.38	8.17	28.74	28.91	3.59	8	112	0.113	SE
CR2	20191010	Sunny	Moderate	Mid-Ebb	В	10.9	10:52	6.06	8.07	28.44	29.23	4.34	9	111	0.146	SE
CR2	20191010	Sunny	Moderate	Mid-Ebb	В	10.9	10:52	6.23	8.11	28.53	29.05	4.7	10	113	0.137	E
CR2	20191010	Sunny	Moderate	Mid-Ebb	М	5.95	10:53	6.47	8.26	28.89	29.21	4.1	10	112	0.106	S
CR2	20191010	Sunny	Moderate	Mid-Ebb	М	5.95	10:53	6.67	8.02	28.82	29.24	3.98	10	110	0.246	SE
CR2	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:54	6.4	8.04	28.49	29.11	3.84	8	112	0.187	SE
CR2	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:54	6.51	8.15	28.55	29.21	4	9	112	0.165	E
F1A	20191010	Sunny	Moderate	Mid-Ebb	В	6.9	11:21	5.9	8.09	28.53	29.43	3.47	10	112	0.238	SE
F1A	20191010	Sunny	Moderate	Mid-Ebb	В	6.9	11:21	6.77	8.35	28.71	29.36	3.55	10	112	0.127	SE
F1A	20191010	Sunny	Moderate	Mid-Ebb	М	3.95	11:22	6.63	8.1	28.61	29.43	2.79	9	112	0.239	SE
F1A	20191010	Sunny	Moderate	Mid-Ebb	М	3.95	11:22	6.74	8.28	28.73	29.33	3.06	10	112	0.083	S
F1A	20191010	Sunny	Moderate	Mid-Ebb	S	1	11:23	6.83	8.19	28.64	29.44	3.02	9	113	0.181	SE
F1A	20191010	Sunny	Moderate	Mid-Ebb	S	1	11:23	6.08	8.16	28.65	29.39	2.59	9	113	0.24	SE
H1	20191010	Sunny	Moderate	Mid-Ebb	В	6.8	09:22	5.89	8.25	28.53	28.74	3.64	10	113	0.096	SE
H1	20191010	Sunny	Moderate	Mid-Ebb	В	6.8	09:22	5.97	7.99	28.74	28.86	3.3	10	111	0.207	SE
H1	20191010	Sunny	Moderate	Mid-Ebb	М	3.9	09:23	5.98	8.36	28.65	28.7	2.61	7	113	0.097	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
H1	20191010	Sunny	Moderate	Mid-Ebb	М	3.9	09:23	6.62	7.99	28.68	28.75	2.72	8	113	0.116	S
H1	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:24	6.1	8	28.68	28.65	2.72	6	112	0.125	SE
H1	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:24	6.67	8.32	28.53	28.6	2.58	5	111	0.234	E
M1	20191010	Sunny	Moderate	Mid-Ebb	В	7.8	11:57	6.33	8.32	28.73	29.38	3.22	11	113	0.129	SE
M1	20191010	Sunny	Moderate	Mid-Ebb	В	7.8	11:57	6.75	8.12	28.8	29.38	3.41	11	113	0.138	SE
M1	20191010	Sunny	Moderate	Mid-Ebb	М	4.4	11:58	6.73	8.17	28.43	29.41	2.92	13	112	0.246	E
M1	20191010	Sunny	Moderate	Mid-Ebb	М	4.4	11:58	6.03	8.36	28.86	29.37	2.85	13	112	0.144	S
M1	20191010	Sunny	Moderate	Mid-Ebb	S	1	11:59	6	8.24	28.68	29.4	2.93	10	112	0.252	S
M1	20191010	Sunny	Moderate	Mid-Ebb	S	1	11:59	6.4	8.31	28.51	29.31	2.91	10	112	0.184	SE
S1	20191010	Sunny	Moderate	Mid-Ebb	В	3.9	09:56	6.68	8.2	28.49	28.99	3.19	12	113	0.192	S
S1	20191010	Sunny	Moderate	Mid-Ebb	В	3.9	09:56	6.51	8.36	28.42	29.04	3.25	12	113	0.234	S
S1	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:57	6.48	8.05	28.61	29.11	2.63	10	112	0.242	SE
S1	20191010	Sunny	Moderate	Mid-Ebb	S	1	09:57	6.62	8.07	28.4	29.05	2.96	10	112	0.111	E
S2A	20191010	Sunny	Moderate	Mid-Ebb	В	8.1	10:28	6.24	8.04	28.89	29.19	3.32	21	112	0.142	S
S2A	20191010	Sunny	Moderate	Mid-Ebb	В	8.1	10:28	6.33	8.33	28.64	29.03	3.27	22	112	0.208	E
S2A	20191010	Sunny	Moderate	Mid-Ebb	М	4.55	10:29	6.76	8.25	28.82	29.12	2.66	16	113	0.228	E
S2A	20191010	Sunny	Moderate	Mid-Ebb	М	4.55	10:29	6.51	7.97	28.9	29.15	2.74	16	112	0.156	SE
S2A	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:30	6.58	8.07	28.56	29.11	2.98	11	112	0.164	S
S2A	20191010	Sunny	Moderate	Mid-Ebb	S	1	10:30	6.14	7.98	28.46	29.15	2.82	10	112	0.241	E
S3	20191010	Sunny	Moderate	Mid-Ebb	В	10.1	11:04	6.13	8.37	28.43	29.14	4.91	15	113	0.185	S
S3	20191010	Sunny	Moderate	Mid-Ebb	В	10.1	11:04	6.34	8.26	28.63	29.03	4.91	14	112	0.174	S
S3	20191010	Sunny	Moderate	Mid-Ebb	М	5.55	11:05	6.73	8.29	28.54	29.18	4.29	14	113	0.216	SE
S3	20191010	Sunny	Moderate	Mid-Ebb	М	5.55	11:05	6.41	8.13	28.52	29.06	3.83	14	113	0.14	SE
S3	20191010	Sunny	Moderate	Mid-Ebb	S	1	11:06	6.05	8.34	28.51	29.23	3.85	12	112	0.097	S
S3	20191010	Sunny	Moderate	Mid-Ebb	S	1	11:06	6.05	7.97	28.43	29.09	4.11	11	112	0.214	E
B1	20191010	Sunny	Moderate	Mid-Flood	В	3.7	14:46	6.38	7.91	27.84	30.04	3.6	8	111	0.172	W
B1	20191010	Sunny	Moderate	Mid-Flood	В	3.7	14:46	6.53	8.12	27.84	29.97	3.11	9	112	0.183	W
B1	20191010	Sunny	Moderate	Mid-Flood	S	1	14:47	6.43	8.09	27.63	29.98	2.61	6	111	0.192	W
B1	20191010	Sunny	Moderate	Mid-Flood	S	1	14:47	6.86	8.08	27.71	30.02	2.8	6	112	0.158	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B2	20191010	Sunny	Moderate	Mid-Flood	В	3.4	15:08	6.32	7.89	27.29	30.02	3.47	7	112	0.134	W
B2	20191010	Sunny	Moderate	Mid-Flood	В	3.4	15:08	6.8	7.87	27.69	29.87	3.05	7	112	0.168	W
B2	20191010	Sunny	Moderate	Mid-Flood	S	1	15:09	6.59	7.95	27.3	29.95	2.68	7	112	0.265	W
B2	20191010	Sunny	Moderate	Mid-Flood	S	1	15:09	6.45	8.02	27.33	30.1	3.04	6	111	0.169	NW
В3	20191010	Sunny	Moderate	Mid-Flood	В	3.8	15:29	6.53	8.03	27.42	30	3.55	9	113	0.137	W
В3	20191010	Sunny	Moderate	Mid-Flood	В	3.8	15:29	6.35	7.85	27.31	29.87	3.64	9	111	0.174	NW
В3	20191010	Sunny	Moderate	Mid-Flood	S	1	15:30	6.35	7.97	27.46	29.84	3.03	6	112	0.206	SW
В3	20191010	Sunny	Moderate	Mid-Flood	S	1	15:30	6.06	8	27.67	30	2.72	5	111	0.258	W
B4	20191010	Sunny	Moderate	Mid-Flood	В	4.6	15:41	6.85	8.18	27.56	29.93	3.72	8	111	0.286	SW
B4	20191010	Sunny	Moderate	Mid-Flood	В	4.6	15:41	6.09	8.09	27.35	29.71	3.66	8	112	0.215	W
B4	20191010	Sunny	Moderate	Mid-Flood	S	1	15:42	6.57	7.93	27.53	29.92	2.63	5	112	0.134	NW
B4	20191010	Sunny	Moderate	Mid-Flood	S	1	15:42	6.48	8.06	27.48	29.67	2.64	6	112	0.274	W
C1A	20191010	Sunny	Moderate	Mid-Flood	В	9.2	14:21	6.19	8.19	27.66	30.26	3.44	8	111	0.166	W
C1A	20191010	Sunny	Moderate	Mid-Flood	В	9.2	14:21	6.89	8	27.48	30.14	3.38	9	112	0.146	W
C1A	20191010	Sunny	Moderate	Mid-Flood	М	5.1	14:22	6.34	7.97	27.75	30.26	3.29	6	112	0.198	W
C1A	20191010	Sunny	Moderate	Mid-Flood	М	5.1	14:22	6.5	8.14	27.56	30.29	3.24	7	112	0.239	W
C1A	20191010	Sunny	Moderate	Mid-Flood	S	1	14:23	6.72	8.07	27.57	30.23	2.77	7	112	0.242	W
C1A	20191010	Sunny	Moderate	Mid-Flood	S	1	14:23	6.05	8.01	27.48	30.17	2.71	6	112	0.27	SW
C2A	20191010	Sunny	Moderate	Mid-Flood	В	10.3	14:21	6.81	8.18	27.51	30.17	3.32	8	112	0.282	W
C2A	20191010	Sunny	Moderate	Mid-Flood	В	10.3	14:21	6.73	8.01	27.82	30.26	3.58	8	113	0.177	W
C2A	20191010	Sunny	Moderate	Mid-Flood	М	5.65	14:22	6.51	8.07	27.47	30.28	3.3	6	113	0.283	W
C2A	20191010	Sunny	Moderate	Mid-Flood	М	5.65	14:22	6.08	7.99	27.3	30.12	3.01	7	111	0.217	W
C2A	20191010	Sunny	Moderate	Mid-Flood	S	1	14:23	6.87	7.91	27.27	30.21	2.92	6	112	0.207	SW
C2A	20191010	Sunny	Moderate	Mid-Flood	S	1	14:23	6.76	7.96	27.51	30.14	2.88	7	112	0.17	SW
CR1	20191010	Sunny	Moderate	Mid-Flood	В	12	14:41	6.76	8.01	27.35	30.16	3.46	7	109	0.239	W
CR1	20191010	Sunny	Moderate	Mid-Flood	В	12	14:41	6.73	8.1	27.69	30.09	3.35	8	109	0.253	W
CR1	20191010	Sunny	Moderate	Mid-Flood	М	6.5	14:42	6.74	7.76	27.31	30.01	3.39	6	110	0.193	W
CR1	20191010	Sunny	Moderate	Mid-Flood	М	6.5	14:42	6.61	7.96	27.42	30.06	3.47	7	110	0.125	W
CR1	20191010	Sunny	Moderate	Mid-Flood	S	1	14:43	6.84	7.92	27.47	30.07	3.08	5	108	0.23	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR1	20191010	Sunny	Moderate	Mid-Flood	S	1	14:43	6.66	7.91	27.51	30.15	3.05	5	109	0.262	W
CR2	20191010	Sunny	Moderate	Mid-Flood	В	10.5	15:53	6.71	7.95	27.84	29.9	3.58	8	111	0.224	W
CR2	20191010	Sunny	Moderate	Mid-Flood	В	10.5	15:53	6.46	8.16	27.37	29.83	3.94	8	110	0.198	SW
CR2	20191010	Sunny	Moderate	Mid-Flood	М	5.75	15:54	6.73	7.85	27.54	29.89	3.55	7	110	0.236	W
CR2	20191010	Sunny	Moderate	Mid-Flood	М	5.75	15:54	6.37	7.88	27.63	29.79	3.3	8	110	0.197	W
CR2	20191010	Sunny	Moderate	Mid-Flood	S	1	15:55	6.22	7.89	27.84	29.92	3.31	8	109	0.235	W
CR2	20191010	Sunny	Moderate	Mid-Flood	S	1	15:55	6.63	7.82	27.3	29.76	3.54	7	110	0.255	W
F1A	20191010	Sunny	Moderate	Mid-Flood	В	6.7	16:15	6.24	8.18	27.74	29.51	3.47	8	112	0.178	SW
F1A	20191010	Sunny	Moderate	Mid-Flood	В	6.7	16:15	6.25	8.09	27.62	29.71	3.13	7	112	0.129	SW
F1A	20191010	Sunny	Moderate	Mid-Flood	М	3.85	16:16	6.75	8.15	27.48	29.69	3.04	6	112	0.204	W
F1A	20191010	Sunny	Moderate	Mid-Flood	М	3.85	16:16	6.35	8.06	27.74	29.71	3.2	7	113	0.19	W
F1A	20191010	Sunny	Moderate	Mid-Flood	S	1	16:17	6.05	7.88	27.66	29.64	2.72	4	113	0.151	W
F1A	20191010	Sunny	Moderate	Mid-Flood	S	1	16:17	6.56	8.07	27.63	29.66	3.1	5	112	0.131	W
H1	20191010	Sunny	Moderate	Mid-Flood	В	7.4	15:10	6.19	7.92	27.72	30.02	3.05	6	112	0.122	NW
H1	20191010	Sunny	Moderate	Mid-Flood	В	7.4	15:10	6.08	8.13	27.61	29.98	3.52	6	111	0.123	W
H1	20191010	Sunny	Moderate	Mid-Flood	М	4.2	15:11	6.58	7.87	27.31	30.02	3.21	6	111	0.223	NW
H1	20191010	Sunny	Moderate	Mid-Flood	М	4.2	15:11	6.13	7.99	27.57	29.99	2.96	6	112	0.191	SW
H1	20191010	Sunny	Moderate	Mid-Flood	S	1	15:12	6.33	7.98	27.85	29.89	2.98	5	111	0.261	W
H1	20191010	Sunny	Moderate	Mid-Flood	S	1	15:12	6.51	8.15	27.62	30.02	3.04	4	112	0.282	W
M1	20191010	Sunny	Moderate	Mid-Flood	В	7.3	16:51	6.12	7.75	27.56	29.57	3.32	9	110	0.229	W
M1	20191010	Sunny	Moderate	Mid-Flood	В	7.3	16:51	6.84	7.8	27.75	29.36	3.6	9	110	0.29	SW
M1	20191010	Sunny	Moderate	Mid-Flood	М	4.15	16:52	6.1	7.83	27.41	29.4	3.27	9	110	0.253	W
M1	20191010	Sunny	Moderate	Mid-Flood	М	4.15	16:52	6.45	8.11	27.63	29.36	3.16	10	109	0.127	W
M1	20191010	Sunny	Moderate	Mid-Flood	S	1	16:53	6.24	7.83	27.75	29.52	2.76	10	109	0.25	SW
M1	20191010	Sunny	Moderate	Mid-Flood	S	1	16:53	6.7	7.77	27.52	29.51	2.63	10	109	0.124	W
S1	20191010	Sunny	Moderate	Mid-Flood	В	4.6	14:52	6.32	8.12	27.85	30.09	3.59	7	112	0.131	SW
S1	20191010	Sunny	Moderate	Mid-Flood	В	4.6	14:52	6.39	7.93	27.56	30.09	3.26	8	112	0.268	NW
S1	20191010	Sunny	Moderate	Mid-Flood	S	1	14:53	6.16	7.8	27.28	30.06	2.99	8	112	0.227	W
S1	20191010	Sunny	Moderate	Mid-Flood	S	1	14:53	6.69	8.16	27.3	30.07	2.71	8	112	0.134	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S2A	20191010	Sunny	Moderate	Mid-Flood	В	8.6	15:29	6.63	7.97	27.59	30	3.53	7	112	0.158	SW
S2A	20191010	Sunny	Moderate	Mid-Flood	В	8.6	15:29	6.06	8.02	27.61	29.93	3.32	8	112	0.209	W
S2A	20191010	Sunny	Moderate	Mid-Flood	М	4.8	15:30	6.4	7.98	27.81	29.96	3.22	8	113	0.268	W
S2A	20191010	Sunny	Moderate	Mid-Flood	М	4.8	15:30	6.2	8.07	27.81	29.93	2.84	7	113	0.277	W
S2A	20191010	Sunny	Moderate	Mid-Flood	S	1	15:31	6.46	8.16	27.27	29.97	2.79	7	113	0.276	W
S2A	20191010	Sunny	Moderate	Mid-Flood	S	1	15:31	6.38	7.92	27.38	29.99	2.95	7	113	0.243	W
S3	20191010	Sunny	Moderate	Mid-Flood	В	9.2	16:05	6.55	7.85	27.55	29.66	3.8	8	112	0.228	W
S3	20191010	Sunny	Moderate	Mid-Flood	В	9.2	16:05	6.78	8.12	27.26	29.47	4.05	8	111	0.137	NW
S3	20191010	Sunny	Moderate	Mid-Flood	М	5.1	16:06	6.44	7.93	27.34	29.73	3.66	8	111	0.21	SW
S3	20191010	Sunny	Moderate	Mid-Flood	М	5.1	16:06	6.42	7.98	27.74	29.55	3.6	7	113	0.241	W
S3	20191010	Sunny	Moderate	Mid-Flood	S	1	16:07	6.68	8.09	27.82	29.51	3.64	8	112	0.145	NW
S3	20191010	Sunny	Moderate	Mid-Flood	S	1	16:07	6.74	7.8	27.58	29.63	3.68	7	113	0.217	SW
B1	20191012	Sunny	Moderate	Mid-Ebb	В	3.7	10:32	6.34	8.19	27.4	29.45	3.32	6	112	0.179	E
B1	20191012	Sunny	Moderate	Mid-Ebb	В	3.7	10:32	6.58	7.93	27.52	29.41	3.81	8	112	0.249	S
B1	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:33	6.12	8.19	27.55	29.3	3.05	8	113	0.102	S
B1	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:33	6.28	8.1	27.54	29.44	2.99	8	113	0.215	SE
B2	20191012	Sunny	Moderate	Mid-Ebb	В	4.7	10:52	6.19	8.14	27.34	29.78	3.72	7	113	0.228	S
B2	20191012	Sunny	Moderate	Mid-Ebb	В	4.7	10:52	6.2	8.23	27.36	29.74	3.35	8	113	0.175	S
B2	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:53	6.26	8.21	27.47	29.83	3.25	6	112	0.112	E
B2	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:53	6.25	8.1	27.5	29.87	2.84	5	113	0.213	E
В3	20191012	Sunny	Moderate	Mid-Ebb	В	4.2	10:58	6.01	8.14	27.68	29.89	3.81	11	113	0.251	S
В3	20191012	Sunny	Moderate	Mid-Ebb	В	4.2	10:58	6.37	8.18	27.47	29.75	3.46	11	113	0.174	SE
В3	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:59	6.52	8.06	27.67	29.71	3.19	9	112	0.211	E
В3	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:59	5.96	7.93	27.6	29.72	3.07	7	113	0.181	S
B4	20191012	Sunny	Moderate	Mid-Ebb	В	4	11:09	6.05	8.25	27.37	29.75	3.41	13	113	0.232	E
B4	20191012	Sunny	Moderate	Mid-Ebb	В	4	11:09	6.49	8.13	27.48	29.95	3.8	12	113	0.22	S
B4	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:10	6.46	7.86	27.49	29.9	3.11	10	112	0.109	SE
B4	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:10	6.41	8.02	27.63	29.83	2.78	9	113	0.211	E
C1A	20191012	Sunny	Moderate	Mid-Ebb	В	9.5	10:00	6.19	8.24	27.44	29.22	3.33	8	113	0.13	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C1A	20191012	Sunny	Moderate	Mid-Ebb	В	9.5	10:00	6.14	8.29	27.36	29.3	3.76	7	113	0.166	SE
C1A	20191012	Sunny	Moderate	Mid-Ebb	М	5.25	10:01	6.45	7.92	27.39	29.16	2.7	8	112	0.144	S
C1A	20191012	Sunny	Moderate	Mid-Ebb	М	5.25	10:01	5.99	8.16	27.48	29.19	2.74	10	113	0.182	SE
C1A	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:02	6.28	8.11	27.64	29.18	3.01	6	112	0.248	E
C1A	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:02	6.39	8.13	27.38	29.21	3.04	8	113	0.099	SE
C2A	20191012	Sunny	Moderate	Mid-Ebb	В	10.5	10:01	6.26	8.24	27.35	29.19	3.48	7	112	0.177	E
C2A	20191012	Sunny	Moderate	Mid-Ebb	В	10.5	10:01	6.24	8	27.35	29.27	3.64	8	112	0.127	E
C2A	20191012	Sunny	Moderate	Mid-Ebb	М	5.75	10:02	6.17	7.88	27.5	29.28	2.94	7	113	0.148	SE
C2A	20191012	Sunny	Moderate	Mid-Ebb	М	5.75	10:02	6.52	7.91	27.51	29.26	3.05	7	112	0.216	E
C2A	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:03	6.16	8.28	27.4	29.13	2.72	3	113	0.093	SE
C2A	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:03	6.42	8.27	27.51	29.1	3.24	5	113	0.206	E
CR1	20191012	Sunny	Moderate	Mid-Ebb	В	12.3	10:18	6.14	7.9	27.59	29.29	3.37	8	113	0.143	SE
CR1	20191012	Sunny	Moderate	Mid-Ebb	В	12.3	10:18	6.18	8.05	27.41	29.23	3.4	7	113	0.12	S
CR1	20191012	Sunny	Moderate	Mid-Ebb	М	6.65	10:19	6.38	8.15	27.4	29.17	2.85	8	113	0.252	S
CR1	20191012	Sunny	Moderate	Mid-Ebb	М	6.65	10:19	6.28	8.23	27.46	29.16	2.77	10	113	0.191	SE
CR1	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:20	6.25	8.13	27.4	29.1	2.98	9	113	0.087	SE
CR1	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:20	6.08	7.96	27.68	29.12	3.04	8	113	0.21	E
CR2	20191012	Sunny	Moderate	Mid-Ebb	В	10.3	11:33	6.55	8.16	27.59	30.19	3.91	10	114	0.248	SE
CR2	20191012	Sunny	Moderate	Mid-Ebb	В	10.3	11:33	6.43	8.23	27.51	30.1	4.08	10	113	0.147	S
CR2	20191012	Sunny	Moderate	Mid-Ebb	М	5.65	11:34	6.34	7.92	27.55	30.07	3.05	8	113	0.106	SE
CR2	20191012	Sunny	Moderate	Mid-Ebb	М	5.65	11:34	5.96	8.2	27.54	30.04	3.46	8	113	0.127	S
CR2	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:35	6.16	8.26	27.51	29.97	3.15	8	113	0.235	SE
CR2	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:35	6.18	8.01	27.55	30.19	3.23	8	113	0.23	S
F1A	20191012	Sunny	Moderate	Mid-Ebb	В	7.2	11:40	6.51	8.18	27.7	30.23	3.47	10	113	0.14	SE
F1A	20191012	Sunny	Moderate	Mid-Ebb	В	7.2	11:40	5.93	8.18	27.37	30.19	3.34	10	113	0.186	E
F1A	20191012	Sunny	Moderate	Mid-Ebb	М	4.1	11:41	6.58	7.96	27.4	30.36	2.72	11	113	0.105	SE
F1A	20191012	Sunny	Moderate	Mid-Ebb	М	4.1	11:41	6.31	8.23	27.33	30.26	3.26	9	113	0.124	S
F1A	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:42	6.1	8.08	27.65	30.47	2.7	10	111	0.108	S
F1A	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:42	6.34	8.27	27.55	30.25	2.98	9	111	0.132	S

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
H1	20191012	Sunny	Moderate	Mid-Ebb	В	7.8	10:38	6.51	8.19	27.3	29.37	3.78	8	112	0.138	S
H1	20191012	Sunny	Moderate	Mid-Ebb	В	7.8	10:38	6.33	8.06	27.58	29.34	3.35	10	113	0.128	S
H1	20191012	Sunny	Moderate	Mid-Ebb	М	4.4	10:39	6.38	7.93	27.46	29.49	3.24	9	112	0.115	S
H1	20191012	Sunny	Moderate	Mid-Ebb	М	4.4	10:39	6.24	8.17	27.57	29.42	2.82	8	113	0.21	S
H1	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:40	6.3	8.15	27.36	29.35	2.76	10	113	0.144	S
H1	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:40	6.33	7.99	27.44	29.5	2.87	9	113	0.138	S
M1	20191012	Sunny	Moderate	Mid-Ebb	В	8.1	12:12	6.52	8.16	27.69	30.23	3.79	12	113	0.186	SE
M1	20191012	Sunny	Moderate	Mid-Ebb	В	8.1	12:12	6.43	7.96	27.44	30.39	3.66	14	113	0.106	E
M1	20191012	Sunny	Moderate	Mid-Ebb	М	4.55	12:13	5.99	8.2	27.54	30.45	3.06	12	114	0.193	SE
M1	20191012	Sunny	Moderate	Mid-Ebb	М	4.55	12:13	6.2	7.86	27.37	30.45	3.06	12	113	0.165	SE
M1	20191012	Sunny	Moderate	Mid-Ebb	S	1	12:14	6.43	8.25	27.51	30.41	3.17	11	113	0.223	SE
M1	20191012	Sunny	Moderate	Mid-Ebb	S	1	12:14	6.54	7.95	27.55	30.27	2.78	10	113	0.199	SE
S1	20191012	Sunny	Moderate	Mid-Ebb	В	4.3	10:42	6.54	8.03	27.53	29.38	3.36	9	113	0.186	E
S1	20191012	Sunny	Moderate	Mid-Ebb	В	4.3	10:42	6.09	7.88	27.4	29.5	3.34	10	113	0.146	S
S1	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:43	6.48	8.22	27.61	29.37	2.83	11	113	0.162	E
S1	20191012	Sunny	Moderate	Mid-Ebb	S	1	10:43	6.41	8.16	27.46	29.44	2.79	13	113	0.09	S
S2A	20191012	Sunny	Moderate	Mid-Ebb	В	8.2	11:12	6.5	8.22	27.69	29.74	3.25	7	114	0.25	E
S2A	20191012	Sunny	Moderate	Mid-Ebb	В	8.2	11:12	6.25	7.89	27.49	29.72	3.53	6	113	0.152	SE
S2A	20191012	Sunny	Moderate	Mid-Ebb	М	4.6	11:13	6.21	8.13	27.59	29.73	2.75	7	113	0.123	Е
S2A	20191012	Sunny	Moderate	Mid-Ebb	М	4.6	11:13	6.15	7.9	27.5	29.8	3.25	7	113	0.165	SE
S2A	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:14	6.06	7.94	27.44	29.82	3.18	9	112	0.23	SE
S2A	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:14	6.47	8.18	27.55	29.93	2.71	8	112	0.1	SE
S3	20191012	Sunny	Moderate	Mid-Ebb	В	9.7	11:43	6.56	8.22	27.31	30.28	3.76	7	114	0.08	E
S3	20191012	Sunny	Moderate	Mid-Ebb	В	9.7	11:43	6.33	8.12	27.6	30.33	3.78	9	113	0.198	S
S3	20191012	Sunny	Moderate	Mid-Ebb	М	5.35	11:44	6.32	7.93	27.61	30.46	3.09	9	113	0.101	SE
S3	20191012	Sunny	Moderate	Mid-Ebb	М	5.35	11:44	6.53	8.09	27.51	30.44	3.43	7	113	0.154	S
S3	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:45	6.23	7.86	27.3	30.37	3.57	5	114	0.146	SE
S3	20191012	Sunny	Moderate	Mid-Ebb	S	1	11:45	6.27	7.93	27.48	30.24	3.48	7	114	0.105	SE
B1	20191012	Sunny	Moderate	Mid-Flood	В	4.6	15:33	6.2	7.99	27.82	30.3	3.56	7	113	0.217	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B1	20191012	Sunny	Moderate	Mid-Flood	В	4.6	15:33	6.73	7.82	27.61	30.36	3.52	6	112	0.281	SW
B1	20191012	Sunny	Moderate	Mid-Flood	S	1	15:34	6.28	8.13	27.69	30.52	2.99	8	111	0.231	W
B1	20191012	Sunny	Moderate	Mid-Flood	S	1	15:34	6.24	8.02	27.72	30.24	2.99	8	112	0.193	W
B2	20191012	Sunny	Moderate	Mid-Flood	В	4	15:53	6.73	8.25	27.51	30.44	3.63	7	112	0.222	NW
B2	20191012	Sunny	Moderate	Mid-Flood	В	4	15:53	6.27	7.85	27.64	30.2	3.62	5	113	0.28	W
B2	20191012	Sunny	Moderate	Mid-Flood	S	1	15:54	6.7	7.97	27.95	30.4	3.01	5	113	0.21	W
B2	20191012	Sunny	Moderate	Mid-Flood	S	1	15:54	6.26	8.06	27.97	30.41	3.14	7	113	0.124	SW
В3	20191012	Sunny	Moderate	Mid-Flood	В	3.3	16:07	6.48	8.23	27.87	29.86	3.8	12	112	0.222	W
В3	20191012	Sunny	Moderate	Mid-Flood	В	3.3	16:07	6.8	8.12	27.97	29.87	3.6	10	113	0.135	W
В3	20191012	Sunny	Moderate	Mid-Flood	S	1	16:08	6.68	8.27	27.96	29.86	3.19	8	112	0.202	NW
В3	20191012	Sunny	Moderate	Mid-Flood	S	1	16:08	6.7	8.07	27.75	29.92	3.03	9	111	0.168	SW
B4	20191012	Sunny	Moderate	Mid-Flood	В	4.2	16:18	6.46	8.27	27.84	30.11	3.5	8	112	0.133	SW
B4	20191012	Sunny	Moderate	Mid-Flood	В	4.2	16:18	6.48	8.19	27.8	30.09	3.87	8	112	0.213	SW
B4	20191012	Sunny	Moderate	Mid-Flood	S	1	16:19	6.57	7.79	27.6	30.02	3.15	8	113	0.213	W
B4	20191012	Sunny	Moderate	Mid-Flood	S	1	16:19	6.42	8.26	27.85	30.04	2.93	9	113	0.237	NW
C1A	20191012	Sunny	Moderate	Mid-Flood	В	9.4	15:08	6.32	7.75	27.86	30.39	3.24	8	113	0.23	SW
C1A	20191012	Sunny	Moderate	Mid-Flood	В	9.4	15:08	6.19	7.8	27.44	30.7	3.71	7	113	0.16	W
C1A	20191012	Sunny	Moderate	Mid-Flood	М	5.2	15:09	6.47	7.96	27.88	30.55	3.21	4	113	0.231	W
C1A	20191012	Sunny	Moderate	Mid-Flood	М	5.2	15:09	6.64	8.02	27.51	30.32	3.28	5	112	0.254	NW
C1A	20191012	Sunny	Moderate	Mid-Flood	S	1	15:10	6.74	7.99	27.64	30.41	3.03	5	112	0.127	W
C1A	20191012	Sunny	Moderate	Mid-Flood	S	1	15:10	6.14	8.12	27.72	30.37	2.69	5	112	0.132	W
C2A	20191012	Sunny	Moderate	Mid-Flood	В	11	15:08	6.45	8.13	27.68	30.53	3.73	6	113	0.174	W
C2A	20191012	Sunny	Moderate	Mid-Flood	В	11	15:08	6.19	7.88	27.76	30.4	3.52	4	113	0.255	NW
C2A	20191012	Sunny	Moderate	Mid-Flood	М	6	15:09	6.73	8.17	27.43	30.58	3.18	8	113	0.186	SW
C2A	20191012	Sunny	Moderate	Mid-Flood	М	6	15:09	6.48	8.19	27.81	30.6	3.1	6	112	0.125	W
C2A	20191012	Sunny	Moderate	Mid-Flood	S	1	15:10	6.35	8.13	27.44	30.68	2.81	8	113	0.264	SW
C2A	20191012	Sunny	Moderate	Mid-Flood	S	1	15:10	6.4	8.27	27.7	30.44	2.78	6	113	0.222	W
CR1	20191012	Sunny	Moderate	Mid-Flood	В	11.8	15:26	6.47	8.18	27.5	30.36	3.57	6	111	0.127	NW
CR1	20191012	Sunny	Moderate	Mid-Flood	В	11.8	15:26	6.45	8.12	27.51	30.25	3.44	7	112	0.22	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR1	20191012	Sunny	Moderate	Mid-Flood	М	6.4	15:27	6.24	7.8	27.4	30.44	3.08	7	112	0.176	W
CR1	20191012	Sunny	Moderate	Mid-Flood	М	6.4	15:27	6.57	8.11	27.57	30.37	3.19	7	112	0.168	NW
CR1	20191012	Sunny	Moderate	Mid-Flood	S	1	15:28	6.71	7.98	27.84	30.52	3.09	4	112	0.241	W
CR1	20191012	Sunny	Moderate	Mid-Flood	S	1	15:28	6.38	7.87	27.78	30.21	3.05	6	111	0.227	W
CR2	20191012	Sunny	Moderate	Mid-Flood	В	10.2	16:34	6.35	7.8	27.54	29.74	3.76	8	113	0.144	W
CR2	20191012	Sunny	Moderate	Mid-Flood	В	10.2	16:34	6.49	7.86	27.4	29.98	3.45	8	111	0.145	W
CR2	20191012	Sunny	Moderate	Mid-Flood	М	5.6	16:35	6.41	7.91	27.93	30.01	3.58	5	112	0.149	SW
CR2	20191012	Sunny	Moderate	Mid-Flood	М	5.6	16:35	6.29	8.25	27.5	29.99	3.49	6	111	0.15	NW
CR2	20191012	Sunny	Moderate	Mid-Flood	S	1	16:36	6.3	7.96	27.45	30.03	3.35	4	111	0.225	NW
CR2	20191012	Sunny	Moderate	Mid-Flood	S	1	16:36	6.73	7.98	27.61	29.89	3.02	3	112	0.218	W
F1A	20191012	Sunny	Moderate	Mid-Flood	В	7	16:51	6.31	7.92	27.4	30	3.61	9	113	0.223	SW
F1A	20191012	Sunny	Moderate	Mid-Flood	В	7	16:51	6.2	8.01	27.93	29.95	3.75	8	113	0.173	W
F1A	20191012	Sunny	Moderate	Mid-Flood	М	4	16:52	6.12	7.77	27.81	29.85	3.33	6	111	0.142	W
F1A	20191012	Sunny	Moderate	Mid-Flood	М	4	16:52	6.33	7.79	27.63	30	2.97	5	112	0.178	W
F1A	20191012	Sunny	Moderate	Mid-Flood	S	1	16:53	6.62	8.07	27.59	29.78	3.28	7	112	0.254	SW
F1A	20191012	Sunny	Moderate	Mid-Flood	S	1	16:53	6.81	8.25	27.55	29.95	3.06	5	113	0.227	W
H1	20191012	Sunny	Moderate	Mid-Flood	В	7.1	15:49	6.38	8.08	27.91	30.4	3.52	10	113	0.193	W
H1	20191012	Sunny	Moderate	Mid-Flood	В	7.1	15:49	6.61	8.28	27.87	30.09	3.75	9	113	0.13	SW
H1	20191012	Sunny	Moderate	Mid-Flood	М	4.05	15:50	6.05	8.01	27.81	30.44	2.97	6	112	0.272	W
H1	20191012	Sunny	Moderate	Mid-Flood	М	4.05	15:50	6.38	7.84	27.6	30.06	3.22	8	113	0.276	W
H1	20191012	Sunny	Moderate	Mid-Flood	S	1	15:51	6.52	8.02	27.71	30.39	2.93	6	113	0.138	NW
H1	20191012	Sunny	Moderate	Mid-Flood	S	1	15:51	6.49	7.81	27.73	30.09	2.9	7	112	0.164	W
M1	20191012	Sunny	Moderate	Mid-Flood	В	7.7	17:29	6.57	7.85	27.76	29.95	3.43	6	112	0.269	W
M1	20191012	Sunny	Moderate	Mid-Flood	В	7.7	17:29	6.17	8.29	27.65	29.85	3.4	7	113	0.195	W
M1	20191012	Sunny	Moderate	Mid-Flood	М	4.35	17:30	6.44	7.81	27.66	29.79	3.24	8	112	0.126	NW
M1	20191012	Sunny	Moderate	Mid-Flood	М	4.35	17:30	6.68	8.23	27.82	29.82	2.94	7	112	0.234	SW
M1	20191012	Sunny	Moderate	Mid-Flood	S	1	17:31	6.36	7.97	27.42	30	2.73	8	112	0.164	W
M1	20191012	Sunny	Moderate	Mid-Flood	S	1	17:31	6.09	7.78	27.53	29.78	3.19	6	112	0.22	W
S1	20191012	Sunny	Moderate	Mid-Flood	В	4.3	15:43	6.55	8.17	27.76	30.09	3.48	6	112	0.158	SW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S1	20191012	Sunny	Moderate	Mid-Flood	В	4.3	15:43	6.35	7.91	27.84	30.41	3.37	5	112	0.259	W
S1	20191012	Sunny	Moderate	Mid-Flood	S	1	15:44	6.58	7.77	27.48	30.36	3.03	6	113	0.247	W
S1	20191012	Sunny	Moderate	Mid-Flood	S	1	15:44	6.61	7.92	27.48	30.14	2.77	5	113	0.207	SW
S2A	20191012	Sunny	Moderate	Mid-Flood	В	8.5	16:13	6.26	8.21	27.59	29.8	3.38	5	112	0.282	W
S2A	20191012	Sunny	Moderate	Mid-Flood	В	8.5	16:13	6.24	8.02	27.89	29.98	3.47	4	113	0.231	SW
S2A	20191012	Sunny	Moderate	Mid-Flood	М	4.75	16:14	6.67	8.25	27.77	29.92	2.91	4	112	0.212	W
S2A	20191012	Sunny	Moderate	Mid-Flood	М	4.75	16:14	6.07	8.06	27.68	29.78	3.29	5	111	0.176	W
S2A	20191012	Sunny	Moderate	Mid-Flood	S	1	16:15	6.38	8.23	27.68	29.79	2.73	5	112	0.199	SW
S2A	20191012	Sunny	Moderate	Mid-Flood	S	1	16:15	6.23	8.17	27.5	29.93	2.69	5	113	0.218	W
S3	20191012	Sunny	Moderate	Mid-Flood	В	8.5	16:44	6.2	8.27	27.41	29.92	3.88	5	113	0.283	W
S3	20191012	Sunny	Moderate	Mid-Flood	В	8.5	16:44	6.39	7.78	27.84	29.96	3.82	5	112	0.273	W
S3	20191012	Sunny	Moderate	Mid-Flood	М	4.75	16:45	6.74	7.83	27.77	29.83	3.66	5	113	0.156	SW
S3	20191012	Sunny	Moderate	Mid-Flood	М	4.75	16:45	6.79	8.27	27.67	29.96	3.36	4	112	0.128	NW
S3	20191012	Sunny	Moderate	Mid-Flood	S	1	16:46	6.36	8.11	27.55	30.02	3.53	6	112	0.232	NW
S3	20191012	Sunny	Moderate	Mid-Flood	S	1	16:46	6.16	7.88	27.5	29.87	3.57	6	113	0.177	W
B1	20191014	Cloudy	Moderate	Mid-Ebb	В	3.5	11:15	6.81	8.29	24.38	27.06	2.99	6	111	0.113	SE
B1	20191014	Cloudy	Moderate	Mid-Ebb	В	3.5	11:15	6.82	8.05	24.38	27.04	2.93	6	111	0.234	S
B1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:16	7.26	8	24.29	26.85	2.38	6	111	0.09	E
B1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:16	7.19	8.27	24.63	27.01	2.77	7	111	0.233	SE
B2	20191014	Cloudy	Moderate	Mid-Ebb	В	4.9	11:36	6.6	8.33	24.2	26.96	2.94	9	111	0.202	S
B2	20191014	Cloudy	Moderate	Mid-Ebb	В	4.9	11:36	6.66	8.26	24.56	27.14	3	7	111	0.09	SE
B2	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:37	6.89	8.17	24.29	26.93	2.49	10	111	0.077	SE
B2	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:37	7.26	8.16	24.56	27.19	2.41	9	111	0.118	E
В3	20191014	Cloudy	Moderate	Mid-Ebb	В	3.8	11:51	6.98	8.05	24.21	27.03	3.5	9	111	0.096	SE
В3	20191014	Cloudy	Moderate	Mid-Ebb	В	3.8	11:51	7.29	7.98	24.36	26.89	3.19	8	111	0.222	S
В3	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:52	7.15	7.98	24.67	26.89	2.91	6	111	0.204	SE
В3	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:52	7.33	8.02	24.32	27.17	2.37	8	111	0.085	SE
B4	20191014	Cloudy	Moderate	Mid-Ebb	В	3.3	12:03	7.12	8.28	24.4	27.02	3.42	8	111	0.15	SE
B4	20191014	Cloudy	Moderate	Mid-Ebb	В	3.3	12:03	7.21	7.97	24.27	27.06	3.04	9	112	0.203	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B4	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:04	7.16	8.2	24.28	27.02	2.68	7	112	0.234	SE
B4	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:04	6.83	8.06	24.68	27.19	2.86	6	111	0.216	SE
C1A	20191014	Cloudy	Moderate	Mid-Ebb	В	8.5	10:50	6.89	8.17	24.37	25.97	3.39	6	111	0.16	S
C1A	20191014	Cloudy	Moderate	Mid-Ebb	В	8.5	10:50	6.8	8.31	24.53	26.82	3.12	7	111	0.172	E
C1A	20191014	Cloudy	Moderate	Mid-Ebb	М	4.75	10:51	6.88	8.3	24.35	26.77	2.77	5	111	0.192	E
C1A	20191014	Cloudy	Moderate	Mid-Ebb	М	4.75	10:51	7.1	8.1	24.4	27.06	2.59	4	112	0.214	SE
C1A	20191014	Cloudy	Moderate	Mid-Ebb	S	1	10:52	7.26	8.14	24.58	27.08	2.76	5	111	0.238	S
C1A	20191014	Cloudy	Moderate	Mid-Ebb	S	1	10:52	6.95	8.14	24.55	27.03	2.42	4	111	0.149	E
C2A	20191014	Cloudy	Moderate	Mid-Ebb	В	10.7	10:56	7.08	8.13	24.34	26.76	3.15	11	111	0.105	E
C2A	20191014	Cloudy	Moderate	Mid-Ebb	В	10.7	10:56	7.03	8.03	24.69	26.71	3.44	9	111	0.162	S
C2A	20191014	Cloudy	Moderate	Mid-Ebb	М	5.85	10:57	6.93	8.25	24.5	27.09	2.71	6	110	0.166	SE
C2A	20191014	Cloudy	Moderate	Mid-Ebb	М	5.85	10:57	7.39	8.31	24.62	26.84	2.63	7	111	0.162	S
C2A	20191014	Cloudy	Moderate	Mid-Ebb	S	1	10:58	7.24	8.2	24.58	26.78	2.78	5	111	0.233	SE
C2A	20191014	Cloudy	Moderate	Mid-Ebb	S	1	10:58	6.7	8.17	24.51	27.07	2.62	6	111	0.151	E
CR1	20191014	Cloudy	Moderate	Mid-Ebb	В	11.3	11:15	7.09	8.34	24.27	27.03	3.33	14	112	0.207	SE
CR1	20191014	Cloudy	Moderate	Mid-Ebb	В	11.3	11:15	6.97	8.2	24.6	26.92	3.36	13	112	0.237	S
CR1	20191014	Cloudy	Moderate	Mid-Ebb	М	6.15	11:16	6.79	8.31	24.42	27.17	2.68	13	112	0.196	S
CR1	20191014	Cloudy	Moderate	Mid-Ebb	М	6.15	11:16	6.9	8.06	24.61	26.94	2.49	13	112	0.121	S
CR1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:17	6.62	8.28	24.22	26.97	2.71	10	112	0.096	S
CR1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:17	6.66	8.34	24.42	27.15	2.58	12	112	0.17	E
CR2	20191014	Cloudy	Moderate	Mid-Ebb	В	9.9	12:28	6.77	8.23	24.49	26.92	3.4	13	111	0.197	S
CR2	20191014	Cloudy	Moderate	Mid-Ebb	В	9.9	12:28	7.14	8.26	24.53	27.05	3.15	13	111	0.186	E
CR2	20191014	Cloudy	Moderate	Mid-Ebb	М	5.45	12:29	7.16	8.03	24.62	27.19	2.56	11	112	0.122	SE
CR2	20191014	Cloudy	Moderate	Mid-Ebb	М	5.45	12:29	6.59	8.23	24.45	27.1	2.87	11	111	0.198	SE
CR2	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:30	6.82	8.16	24.49	27.14	2.43	7	111	0.099	SE
CR2	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:30	6.58	8.06	24.3	26.95	2.81	8	112	0.134	E
F1A	20191014	Cloudy	Moderate	Mid-Ebb	В	7.2	12:31	6.53	8.2	24.47	27.13	3.36	8	112	0.137	E
F1A	20191014	Cloudy	Moderate	Mid-Ebb	В	7.2	12:31	7.32	8.09	24.48	27.05	2.9	9	112	0.079	SE
F1A	20191014	Cloudy	Moderate	Mid-Ebb	М	4.1	12:32	7.05	8.21	24.2	27.18	2.74	7	112	0.242	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
F1A	20191014	Cloudy	Moderate	Mid-Ebb	М	4.1	12:32	6.77	8.19	24.47	27.12	2.82	8	112	0.244	S
F1A	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:33	6.85	7.97	24.6	27.07	2.35	7	111	0.227	SE
F1A	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:33	7.15	8.06	24.22	26.94	2.54	8	111	0.232	S
H1	20191014	Cloudy	Moderate	Mid-Ebb	В	7.2	11:36	6.64	8.33	24.37	27.09	3.03	5	111	0.238	S
H1	20191014	Cloudy	Moderate	Mid-Ebb	В	7.2	11:36	6.82	8.13	24.6	27.03	3.23	6	111	0.095	S
H1	20191014	Cloudy	Moderate	Mid-Ebb	М	4.1	11:37	7.35	8.12	24.59	26.91	2.44	6	110	0.156	SE
H1	20191014	Cloudy	Moderate	Mid-Ebb	М	4.1	11:37	6.53	8.05	24.67	26.86	2.93	5	111	0.106	E
H1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:38	6.81	7.98	24.69	26.94	2.45	6	111	0.196	S
H1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:38	7.05	8.19	24.64	27.19	2.78	6	110	0.191	E
M1	20191014	Cloudy	Moderate	Mid-Ebb	В	8.6	13:00	6.87	8.1	24.69	26.99	2.97	12	111	0.215	S
M1	20191014	Cloudy	Moderate	Mid-Ebb	В	8.6	13:00	6.99	8.08	24.61	26.83	2.99	14	111	0.15	S
M1	20191014	Cloudy	Moderate	Mid-Ebb	М	4.8	13:01	6.6	8.33	24.7	26.92	2.37	11	111	0.165	S
M1	20191014	Cloudy	Moderate	Mid-Ebb	М	4.8	13:01	7.16	8.11	24.63	26.85	2.57	12	111	0.181	E
M1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	13:02	6.78	8.01	24.52	26.97	2.42	12	111	0.094	S
M1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	13:02	6.91	8.27	24.53	26.99	2.76	14	111	0.126	SE
S1	20191014	Cloudy	Moderate	Mid-Ebb	В	4.3	11:25	6.99	8.33	24.36	27.1	3.37	7	112	0.127	E
S1	20191014	Cloudy	Moderate	Mid-Ebb	В	4.3	11:25	6.52	8.14	24.48	27.14	3.4	6	112	0.103	SE
S1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:26	6.55	8.11	24.33	26.96	2.8	6	112	0.229	SE
S1	20191014	Cloudy	Moderate	Mid-Ebb	S	1	11:26	7.1	8.33	24.31	26.97	2.52	5	111	0.228	SE
S2A	20191014	Cloudy	Moderate	Mid-Ebb	В	8.2	12:00	7.39	8.15	24.34	27.14	2.86	10	112	0.131	S
S2A	20191014	Cloudy	Moderate	Mid-Ebb	В	8.2	12:00	6.86	7.98	24.59	27.06	3.15	11	112	0.159	E
S2A	20191014	Cloudy	Moderate	Mid-Ebb	М	4.6	12:01	7.16	8.27	24.39	27.05	2.84	8	112	0.205	E
S2A	20191014	Cloudy	Moderate	Mid-Ebb	М	4.6	12:01	6.72	8.32	24.52	27.12	2.69	8	112	0.202	SE
S2A	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:02	6.66	7.97	24.21	26.89	2.75	7	112	0.209	S
S2A	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:02	6.92	8.07	24.64	26.85	2.55	6	112	0.161	E
S3	20191014	Cloudy	Moderate	Mid-Ebb	В	9.6	12:38	6.94	7.98	24.24	26.86	3.43	10	112	0.105	SE
S3	20191014	Cloudy	Moderate	Mid-Ebb	В	9.6	12:38	7.38	8.1	24.59	26.85	3.13	11	112	0.132	E
S3	20191014	Cloudy	Moderate	Mid-Ebb	М	5.3	12:39	6.62	8.23	24.45	26.97	2.71	10	111	0.14	S
S3	20191014	Cloudy	Moderate	Mid-Ebb	М	5.3	12:39	6.57	8.03	24.28	26.85	2.55	8	112	0.124	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S3	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:40	7.15	8.15	24.66	26.88	2.7	8	111	0.204	SE
S3	20191014	Cloudy	Moderate	Mid-Ebb	S	1	12:40	7.39	8.18	24.56	27.05	2.97	10	112	0.213	E
B1	20191014	Cloudy	Moderate	Mid-Flood	В	3.9	16:16	6.55	8.12	24.94	27.07	3.08	6	111	0.197	W
B1	20191014	Cloudy	Moderate	Mid-Flood	В	3.9	16:16	7.45	7.87	25.06	27.11	3.41	8	112	0.256	SW
B1	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:17	6.9	8.38	25.05	26.97	2.75	5	112	0.226	W
B1	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:17	6.63	7.99	24.88	27.06	2.9	7	112	0.128	SW
B2	20191014	Cloudy	Moderate	Mid-Flood	В	3.9	16:37	7.19	8.19	25.09	26.96	3.42	9	111	0.277	NW
B2	20191014	Cloudy	Moderate	Mid-Flood	В	3.9	16:37	6.96	8.13	24.74	27.15	3.28	10	111	0.16	W
B2	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:38	7	8.14	24.4	27.03	2.89	9	112	0.159	W
B2	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:38	7.22	8.12	24.88	27.03	2.8	7	111	0.216	SW
В3	20191014	Cloudy	Moderate	Mid-Flood	В	3.9	16:49	7	8.24	24.79	27.08	3.22	8	111	0.252	W
В3	20191014	Cloudy	Moderate	Mid-Flood	В	3.9	16:49	7.42	8.08	24.8	26.92	3.08	9	111	0.247	W
В3	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:50	7.45	7.98	25.06	26.8	2.84	7	111	0.279	SW
В3	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:50	6.88	7.99	25.09	26.75	2.88	8	111	0.246	SW
B4	20191014	Cloudy	Moderate	Mid-Flood	В	3.9	17:00	6.67	7.91	24.54	26.7	3.5	9	111	0.217	W
B4	20191014	Cloudy	Moderate	Mid-Flood	В	3.9	17:00	6.74	8.31	24.45	26.98	3.24	7	112	0.292	W
B4	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:01	7.21	8.1	24.8	26.73	2.61	6	112	0.124	W
B4	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:01	7.19	8.3	24.53	26.79	2.96	4	111	0.247	W
C1A	20191014	Cloudy	Moderate	Mid-Flood	В	10.8	15:51	7.01	8.17	24.66	27.28	3.1	11	110	0.127	W
C1A	20191014	Cloudy	Moderate	Mid-Flood	В	10.8	15:51	7.16	8.28	24.76	27.02	2.94	12	112	0.21	SW
C1A	20191014	Cloudy	Moderate	Mid-Flood	М	5.9	15:52	6.96	8.37	24.42	26.94	2.79	12	111	0.133	W
C1A	20191014	Cloudy	Moderate	Mid-Flood	М	5.9	15:52	6.86	8.13	25.05	27.18	2.85	10	111	0.252	SW
C1A	20191014	Cloudy	Moderate	Mid-Flood	S	1	15:53	7.34	7.88	24.58	26.98	2.63	8	112	0.124	W
C1A	20191014	Cloudy	Moderate	Mid-Flood	S	1	15:53	6.7	8.05	24.67	26.94	2.75	9	112	0.23	NW
C2A	20191014	Cloudy	Moderate	Mid-Flood	В	11	15:50	7.49	8.06	24.52	27.15	3.41	10	112	0.195	W
C2A	20191014	Cloudy	Moderate	Mid-Flood	В	11	15:50	7.32	8.34	24.98	26.92	2.97	11	111	0.249	SW
C2A	20191014	Cloudy	Moderate	Mid-Flood	М	6	15:51	7.38	8.14	24.57	27.17	2.92	9	111	0.271	SW
C2A	20191014	Cloudy	Moderate	Mid-Flood	М	6	15:51	6.62	8.31	25.12	27.29	2.7	8	110	0.198	SW
C2A	20191014	Cloudy	Moderate	Mid-Flood	S	1	15:52	6.95	7.94	24.47	27.05	2.84	10	112	0.124	SW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C2A	20191014	Cloudy	Moderate	Mid-Flood	S	1	15:52	6.64	8.24	24.49	26.94	2.6	10	111	0.155	W
F1A	20191014	Cloudy	Moderate	Mid-Flood	В	6.8	17:32	7.11	7.99	24.41	27.19	3.39	8	111	0.136	W
F1A	20191014	Cloudy	Moderate	Mid-Flood	В	6.8	17:32	7.21	8.24	24.86	27.06	2.99	8	110	0.138	W
F1A	20191014	Cloudy	Moderate	Mid-Flood	М	3.9	17:33	7.06	7.91	25.01	27.22	2.81	10	111	0.209	W
F1A	20191014	Cloudy	Moderate	Mid-Flood	М	3.9	17:33	7.46	8.08	24.79	26.98	3.13	11	112	0.167	W
F1A	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:34	7.01	7.86	24.76	27.04	2.48	9	111	0.186	W
F1A	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:34	6.89	7.88	24.85	27.24	2.54	10	111	0.275	W
H1	20191014	Cloudy	Moderate	Mid-Flood	В	7.3	16:30	6.88	8.14	25.12	26.92	3.37	7	112	0.183	W
H1	20191014	Cloudy	Moderate	Mid-Flood	В	7.3	16:30	6.88	7.99	24.88	27.12	3.05	6	111	0.29	W
H1	20191014	Cloudy	Moderate	Mid-Flood	М	4.15	16:31	7.01	8.04	24.57	27.22	2.83	5	112	0.2	W
H1	20191014	Cloudy	Moderate	Mid-Flood	М	4.15	16:31	7.11	8	24.9	27.26	2.8	6	111	0.274	W
H1	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:32	7.02	7.98	24.77	27.27	2.39	5	111	0.192	W
H1	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:32	7.36	8.18	24.93	27.12	2.65	5	112	0.206	SW
M1	20191014	Cloudy	Moderate	Mid-Flood	В	6.4	18:04	6.58	8.38	24.56	26.82	3.13	5	111	0.28	W
M1	20191014	Cloudy	Moderate	Mid-Flood	В	6.4	18:04	6.93	8	24.57	26.57	3.17	6	111	0.203	NW
M1	20191014	Cloudy	Moderate	Mid-Flood	М	3.7	18:05	7.07	8	24.88	26.9	2.91	5	112	0.226	W
M1	20191014	Cloudy	Moderate	Mid-Flood	М	3.7	18:05	6.81	8	24.98	26.65	2.98	5	112	0.193	NW
M1	20191014	Cloudy	Moderate	Mid-Flood	S	1	18:06	7.32	8.39	25.14	26.76	2.78	6	111	0.178	W
M1	20191014	Cloudy	Moderate	Mid-Flood	S	1	18:06	6.58	8.08	24.84	26.59	2.9	7	111	0.221	W
CR1	20191014	Cloudy	Moderate	Mid-Flood	В	11.9	16:08	7.17	8.15	24.42	27.11	2.9	10	112	0.267	W
CR1	20191014	Cloudy	Moderate	Mid-Flood	В	11.9	16:08	6.67	8.07	24.42	27.06	3.31	10	111	0.123	W
CR1	20191014	Cloudy	Moderate	Mid-Flood	М	6.45	16:09	7.24	8.25	24.69	26.98	2.73	9	111	0.168	W
CR1	20191014	Cloudy	Moderate	Mid-Flood	М	6.45	16:09	7.04	8.33	25.05	27.04	2.88	9	111	0.214	W
CR1	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:10	7.19	8.37	24.43	27.28	2.8	8	111	0.153	SW
CR1	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:10	6.83	8.31	24.72	27.22	2.37	8	111	0.189	W
CR2	20191014	Cloudy	Moderate	Mid-Flood	В	10.1	17:29	7.15	8.23	24.55	27.07	3.38	4	112	0.234	W
CR2	20191014	Cloudy	Moderate	Mid-Flood	В	10.1	17:29	7.33	8.22	25.02	27.26	2.99	6	111	0.212	SW
CR2	20191014	Cloudy	Moderate	Mid-Flood	М	5.55	17:30	6.96	7.96	24.72	27.11	2.89	6	112	0.282	W
CR2	20191014	Cloudy	Moderate	Mid-Flood	М	5.55	17:30	7.03	8.13	24.41	27.27	2.96	6	112	0.201	SW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR2	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:31	7.26	8.29	24.83	27.27	2.43	5	111	0.193	W
CR2	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:31	7.41	8.07	24.63	27.16	2.54	5	111	0.262	NW
S1	20191014	Cloudy	Moderate	Mid-Flood	В	4.6	16:26	7.48	8.17	24.67	27.15	3.38	12	111	0.262	W
S1	20191014	Cloudy	Moderate	Mid-Flood	В	4.6	16:26	7.39	8.37	24.66	27.03	3.06	12	111	0.287	W
S1	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:27	7.19	8.22	24.82	27.25	2.42	10	110	0.193	W
S1	20191014	Cloudy	Moderate	Mid-Flood	S	1	16:27	6.86	8.09	24.71	27.24	2.88	11	111	0.271	NW
S2A	20191014	Cloudy	Moderate	Mid-Flood	В	8.7	17:01	7.21	8.09	25.13	27.16	3.08	8	110	0.267	NW
S2A	20191014	Cloudy	Moderate	Mid-Flood	В	8.7	17:01	6.79	8.03	24.97	27.22	3.19	8	111	0.149	NW
S2A	20191014	Cloudy	Moderate	Mid-Flood	М	4.85	17:02	6.55	8.07	24.74	27.06	2.71	7	111	0.223	W
S2A	20191014	Cloudy	Moderate	Mid-Flood	М	4.85	17:02	6.62	8.36	25.01	27.25	3.07	8	111	0.21	W
S2A	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:03	6.68	7.86	24.86	26.97	2.76	6	111	0.246	SW
S2A	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:03	6.85	7.94	24.5	27.14	2.88	8	111	0.167	SW
S3	20191014	Cloudy	Moderate	Mid-Flood	В	8	17:39	7.17	7.99	24.83	27.12	3.59	11	112	0.171	W
S3	20191014	Cloudy	Moderate	Mid-Flood	В	8	17:39	7.38	8.29	25.01	26.99	3.59	9	111	0.122	W
S3	20191014	Cloudy	Moderate	Mid-Flood	М	4.5	17:40	7.14	8.28	24.79	27.18	2.82	9	111	0.152	W
S3	20191014	Cloudy	Moderate	Mid-Flood	М	4.5	17:40	6.76	8.35	25.03	27.13	3.09	7	111	0.142	W
S3	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:41	6.62	8.12	24.99	26.9	2.6	8	112	0.249	W
S3	20191014	Cloudy	Moderate	Mid-Flood	S	1	17:41	6.79	8	24.42	27.08	2.67	7	111	0.133	W
B1	20191016	Sunny	Moderate	Mid-Flood	В	4.3	08:25	6.3	8.25	28.66	28.31	4.46	20	112	0.24	W
B1	20191016	Sunny	Moderate	Mid-Flood	В	4.3	08:25	5.83	8.27	28.73	28.25	4.39	18	113	0.293	W
B1	20191016	Sunny	Moderate	Mid-Flood	S	1	08:26	5.92	8.07	28.53	28.27	4.08	22	113	0.273	W
B1	20191016	Sunny	Moderate	Mid-Flood	S	1	08:26	6.28	8.22	28.81	28.41	4.11	21	113	0.188	SW
B2	20191016	Sunny	Moderate	Mid-Flood	В	3.4	08:46	5.88	8.13	28.69	28.1	4.62	28	113	0.211	W
B2	20191016	Sunny	Moderate	Mid-Flood	В	3.4	08:46	5.75	8.07	28.7	28.11	4.33	27	113	0.341	W
B2	20191016	Sunny	Moderate	Mid-Flood	S	1	08:47	6.26	8.11	28.76	28.3	3.87	24	113	0.311	W
B2	20191016	Sunny	Moderate	Mid-Flood	S	1	08:47	5.66	8.08	28.77	28.4	3.79	24	113	0.329	W
В3	20191016	Sunny	Moderate	Mid-Flood	В	3.8	09:29	5.92	8.24	28.29	28.11	4.54	32	113	0.157	W
В3	20191016	Sunny	Moderate	Mid-Flood	В	3.8	09:29	6.33	8.22	28.72	28.28	4.72	32	112	0.29	W
В3	20191016	Sunny	Moderate	Mid-Flood	S	1	09:30	6.39	8	28.78	28.22	3.91	19	113	0.193	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
В3	20191016	Sunny	Moderate	Mid-Flood	S	1	09:30	5.93	8.09	28.37	28.17	3.84	21	112	0.264	W
B4	20191016	Sunny	Moderate	Mid-Flood	В	3.8	09:38	6.35	8.28	28.73	28.31	4.68	36	113	0.264	SW
B4	20191016	Sunny	Moderate	Mid-Flood	В	3.8	09:38	6	8.23	28.75	28.31	4.61	36	113	0.343	SW
B4	20191016	Sunny	Moderate	Mid-Flood	S	1	09:39	6.12	8.29	28.73	28.3	4.16	24	112	0.173	W
B4	20191016	Sunny	Moderate	Mid-Flood	S	1	09:39	6.12	8.05	28.82	28.13	3.86	24	113	0.334	NW
C1A	20191016	Sunny	Moderate	Mid-Flood	В	10.2	08:00	6.41	8.15	28.24	28.16	4.54	24	111	0.2	W
C1A	20191016	Sunny	Moderate	Mid-Flood	В	10.2	08:00	6.15	8.12	28.33	28.13	4.35	24	112	0.177	W
C1A	20191016	Sunny	Moderate	Mid-Flood	М	5.6	08:01	6.16	8.16	28.31	28.12	3.96	23	112	0.336	W
C1A	20191016	Sunny	Moderate	Mid-Flood	М	5.6	08:01	6.1	8.08	28.79	28.41	4.33	25	112	0.309	SW
C1A	20191016	Sunny	Moderate	Mid-Flood	S	1	08:02	6.32	8.21	28.44	28.39	3.66	22	112	0.35	SW
C1A	20191016	Sunny	Moderate	Mid-Flood	S	1	08:02	5.82	8.01	28.67	28.27	3.59	22	112	0.26	W
C2A	20191016	Sunny	Moderate	Mid-Flood	В	10.5	08:00	5.82	8.21	28.52	28.22	4.67	28	111	0.289	W
C2A	20191016	Sunny	Moderate	Mid-Flood	В	10.5	08:00	5.91	8.11	28.64	28.27	4.35	26	112	0.188	W
C2A	20191016	Sunny	Moderate	Mid-Flood	М	5.75	08:01	5.74	8.22	28.28	28.14	4.33	25	111	0.154	W
C2A	20191016	Sunny	Moderate	Mid-Flood	М	5.75	08:01	6	8.01	28.72	28.27	3.83	25	111	0.266	W
C2A	20191016	Sunny	Moderate	Mid-Flood	S	1	08:02	5.96	8.21	28.63	28.26	3.94	25	112	0.24	W
C2A	20191016	Sunny	Moderate	Mid-Flood	S	1	08:02	5.88	8.11	28.49	28.18	3.82	26	112	0.188	W
CR1	20191016	Sunny	Moderate	Mid-Flood	В	11.6	08:22	6.37	8.24	28.2	28.11	4.79	28	113	0.345	W
CR1	20191016	Sunny	Moderate	Mid-Flood	В	11.6	08:22	6.23	8.05	28.8	28.12	4.45	28	114	0.178	SW
CR1	20191016	Sunny	Moderate	Mid-Flood	М	6.3	08:23	5.73	8.04	28.34	28.1	4.5	22	112	0.299	NW
CR1	20191016	Sunny	Moderate	Mid-Flood	М	6.3	08:23	5.68	8.05	28.75	28.15	4.51	24	113	0.21	SW
CR1	20191016	Sunny	Moderate	Mid-Flood	S	1	08:24	6.23	8.03	28.68	28.39	4.08	23	113	0.293	SW
CR1	20191016	Sunny	Moderate	Mid-Flood	S	1	08:24	5.99	8.2	28.45	28.39	4.22	21	113	0.226	SW
CR2	20191016	Sunny	Moderate	Mid-Flood	В	10.6	08:50	5.9	8.27	28.62	28.1	4.75	24	113	0.243	NW
CR2	20191016	Sunny	Moderate	Mid-Flood	В	10.6	08:50	5.95	8.06	28.69	28.21	4.87	25	113	0.171	W
CR2	20191016	Sunny	Moderate	Mid-Flood	М	5.8	08:51	6.31	8.09	28.64	28.22	4.45	23	113	0.176	W
CR2	20191016	Sunny	Moderate	Mid-Flood	М	5.8	08:51	6.39	8.12	28.62	28.37	4.72	24	113	0.218	NW
CR2	20191016	Sunny	Moderate	Mid-Flood	S	1	08:52	5.91	8.02	28.3	28.11	3.95	25	112	0.343	W
CR2	20191016	Sunny	Moderate	Mid-Flood	S	1	08:52	5.92	8.17	28.8	28.36	4.47	24	112	0.339	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
F1A	20191016	Sunny	Moderate	Mid-Flood	В	7.1	09:52	5.72	8.23	28.32	28.38	4.11	19	112	0.17	SW
F1A	20191016	Sunny	Moderate	Mid-Flood	В	7.1	09:52	6.35	8.29	28.56	28.25	4.43	18	112	0.231	SW
F1A	20191016	Sunny	Moderate	Mid-Flood	М	4.05	09:53	6.37	8.15	28.6	28.14	3.88	22	112	0.297	W
F1A	20191016	Sunny	Moderate	Mid-Flood	М	4.05	09:53	5.8	8.11	28.44	28.12	4.15	21	112	0.344	W
F1A	20191016	Sunny	Moderate	Mid-Flood	S	1	09:54	6.16	8.03	28.43	28.13	4.04	20	112	0.237	W
F1A	20191016	Sunny	Moderate	Mid-Flood	S	1	09:54	5.68	8.21	28.4	28.28	4.1	22	112	0.297	SW
H1	20191016	Sunny	Moderate	Mid-Flood	В	7.5	09:08	5.76	8.02	28.78	28.15	4.47	22	111	0.311	SW
H1	20191016	Sunny	Moderate	Mid-Flood	В	7.5	09:08	5.93	8.24	28.47	28.33	4.5	21	112	0.148	W
H1	20191016	Sunny	Moderate	Mid-Flood	М	4.25	09:09	5.77	8.09	28.68	28.3	4.05	21	112	0.197	W
H1	20191016	Sunny	Moderate	Mid-Flood	М	4.25	09:09	6.03	8.1	28.3	28.3	4.16	22	112	0.228	NW
H1	20191016	Sunny	Moderate	Mid-Flood	S	1	09:10	6.07	8.24	28.52	28.17	4.05	22	113	0.327	W
H1	20191016	Sunny	Moderate	Mid-Flood	S	1	09:10	6.41	8.13	28.53	28.23	3.58	23	113	0.2	W
M1	20191016	Sunny	Moderate	Mid-Flood	В	7.6	10:29	5.91	8.26	28.37	28.23	4.09	20	113	0.166	NW
M1	20191016	Sunny	Moderate	Mid-Flood	В	7.6	10:29	6.05	8.18	28.69	28.29	4.53	22	113	0.291	W
M1	20191016	Sunny	Moderate	Mid-Flood	М	4.3	10:30	5.74	8.28	28.2	28.27	4.23	21	113	0.226	W
M1	20191016	Sunny	Moderate	Mid-Flood	М	4.3	10:30	6.15	8.15	28.51	28.36	3.84	20	113	0.248	W
M1	20191016	Sunny	Moderate	Mid-Flood	S	1	10:31	6.07	8.14	28.6	28.4	3.63	15	113	0.335	W
M1	20191016	Sunny	Moderate	Mid-Flood	S	1	10:31	6	8.18	28.67	28.39	3.85	14	112	0.217	W
S1	20191016	Sunny	Moderate	Mid-Flood	В	4	08:35	5.89	8.15	28.49	28.22	4.31	20	112	0.294	W
S1	20191016	Sunny	Moderate	Mid-Flood	В	4	08:35	6.12	8.18	28.33	28.39	4.49	22	112	0.27	W
S1	20191016	Sunny	Moderate	Mid-Flood	S	1	08:36	5.92	8.03	28.4	28.37	3.59	19		0.22	SW
S1	20191016	Sunny	Moderate	Mid-Flood	S	1	08:36	5.78	8.07	28.64	28.17	3.89	18	112	0.17	W
S2A	20191016	Sunny	Moderate	Mid-Flood	В	8.1	09:09	6.27	8.19	28.61	28.33	4.25	26	112	0.179	NW
S2A	20191016	Sunny	Moderate	Mid-Flood	В	8.1	09:09	6.28	8.17	28.7	28.25	4.1	25	112	0.324	W
S2A	20191016	Sunny	Moderate	Mid-Flood	М	4.55	09:10	5.76	8.04	28.32	28.33	4.19	24	112	0.275	W
S2A	20191016	Sunny	Moderate	Mid-Flood	М	4.55	09:10	6.19	8.13	28.53	28.36	4.17	23	112	0.335	NW
S2A	20191016	Sunny	Moderate	Mid-Flood	S	1	09:11	6.13	8.01	28.23	28.26	3.56	20	112	0.289	W
S2A	20191016	Sunny	Moderate	Mid-Flood	S	1	09:11	6.17	8.28	28.42	28.34	3.57	21	112	0.213	W
S3	20191016	Sunny	Moderate	Mid-Flood	В	8.2	09:39	6.24	8.29	28.35	28.23	5.32	26	112	0.286	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S3	20191016	Sunny	Moderate	Mid-Flood	В	8.2	09:39	6.31	8.03	28.8	28.17	5.08	26	113	0.175	SW
S3	20191016	Sunny	Moderate	Mid-Flood	М	4.6	09:40	5.66	8.09	28.24	28.25	4.44	24	112	0.233	W
S3	20191016	Sunny	Moderate	Mid-Flood	М	4.6	09:40	6.12	8.26	28.56	28.3	4.46	23	112	0.233	W
S3	20191016	Sunny	Moderate	Mid-Flood	S	1	09:41	6.11	8.24	28.38	28.31	4.48	20	112	0.279	W
S3	20191016	Sunny	Moderate	Mid-Flood	S	1	09:41	5.98	8.28	28.26	28.31	4.24	21	113	0.174	W
B1	20191016	Sunny	Moderate	Mid-Ebb	В	3.6	12:24	6.85	8.03	28.75	28.16	4.38	18	113	0.163	SE
B1	20191016	Sunny	Moderate	Mid-Ebb	В	3.6	12:24	6.04	8.04	28.21	28	4.24	19	113	0.164	E
B1	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:25	6.22	8.22	28.22	28.21	3.95	22	114	0.183	E
B1	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:25	6.62	8.09	28.42	28.09	3.61	22	113	0.265	E
B2	20191016	Sunny	Moderate	Mid-Ebb	В	4.6	12:45	6.65	8.23	28.34	28.27	4.17	11	113	0.26	SE
B2	20191016	Sunny	Moderate	Mid-Ebb	В	4.6	12:45	6.21	8.2	28.74	28.22	4.18	11	112	0.239	E
B2	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:46	6.1	8.06	28.46	27.98	3.67	13	113	0.203	E
B2	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:46	5.94	8.21	28.66	28.02	3.84	12	113	0.205	E
В3	20191016	Sunny	Moderate	Mid-Ebb	В	4.5	13:28	6.28	8.23	28.77	28.27	4.29	24	113	0.222	SE
В3	20191016	Sunny	Moderate	Mid-Ebb	В	4.5	13:28	6.14	8.27	28.15	28.21	4.38			0.22	
В3	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:29	6.8	8.07	28.31	28.22	3.84	15		0.227	SE
В3	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:29	6.62	8.19	28.35	28.18	4	16	113	0.151	E
B4	20191016	Sunny	Moderate	Mid-Ebb	В	3.4	13:38	6.42	8.26	28.58	27.91	4.08	22	113	0.21	SE
B4	20191016	Sunny	Moderate	Mid-Ebb	В	3.4	13:38	6.72	8.07	28.31	27.91	4.5	23	113	0.128	SE
B4	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:39	6.08	8.17	28.46	27.96	3.93	20	113	0.131	E
B4	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:39	6.18	8.13	28.37	28.18	3.66	22	113	0.138	SE
C1A	20191016	Sunny	Moderate	Mid-Ebb	В	8.5	11:55	6.88	8.22	28.63	28.09	4.4	20	112	0.201	E
C1A	20191016	Sunny	Moderate	Mid-Ebb	В	8.5	11:55	6.42	8.12	28.77	27.9	4.11	21	111	0.162	E
C1A	20191016	Sunny	Moderate	Mid-Ebb	М	4.75	11:56	6.47	8.25	28.25	27.9	3.54	17	111	0.277	E
C1A	20191016	Sunny	Moderate	Mid-Ebb	М	4.75	11:56	6.02	8.14	28.29	28.03	3.49	18	110	0.212	E
C1A	20191016	Sunny	Moderate	Mid-Ebb	S	1	11:57	6.17	8.26	28.43	28.12	3.48	14	111	0.167	SE
C1A	20191016	Sunny	Moderate	Mid-Ebb	S	1	11:57	6.59	8.18	28.65	28.18	3.44	15	110	0.169	E
C2A	20191016	Sunny	Moderate	Mid-Ebb	В	10.8	12:16	6.14	8.29	28.17	28.2	4.29	21	111	0.14	SE
C2A	20191016	Sunny	Moderate	Mid-Ebb	В	10.8	12:16	6.68	8.12	28.24	28.05	4.32	19	112	0.251	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C2A	20191016	Sunny	Moderate	Mid-Ebb	М	5.9	12:17	5.92	8.06	28.21	28.18	3.82	19	110	0.144	SE
C2A	20191016	Sunny	Moderate	Mid-Ebb	М	5.9	12:17	6.59	8.12	28.17	28.18	3.46	20	111	0.279	E
C2A	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:18	6.69	8.26	28.14	28.1	3.54	19	111	0.183	E
C2A	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:18	6.77	8.17	28.3	27.9	3.95	18	111	0.168	SE
CR1	20191016	Sunny	Moderate	Mid-Ebb	В	11.4	12:36	6.07	8.29	28.15	28.3	4.55	26	113	0.18	SE
CR1	20191016	Sunny	Moderate	Mid-Ebb	В	11.4	12:36	6.69	8.21	28.19	27.91	4.59	24	113	0.225	SE
CR1	20191016	Sunny	Moderate	Mid-Ebb	М	6.2	12:37	6.37	8.24	28.15	28.27	3.75	18	113	0.274	Е
CR1	20191016	Sunny	Moderate	Mid-Ebb	М	6.2	12:37	6.71	8.07	28.51	28.16	4.15	20	113	0.268	E
CR1	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:38	6.39	8.09	28.74	28.3	3.82	19	113	0.239	SE
CR1	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:38	6.75	8.14	28.13	28.04	3.86	20	113	0.193	E
CR2	20191016	Sunny	Moderate	Mid-Ebb	В	10.3	12:59	6.16	8.21	28.63	27.97	4.72	21	112	0.258	SE
CR2	20191016	Sunny	Moderate	Mid-Ebb	В	10.3	12:59	6.35	8.26	28.71	28.22	4.78	21	111	0.163	E
CR2	20191016	Sunny	Moderate	Mid-Ebb	М	5.65	13:00	6.45	8.05	28.16	28.23	4.18	20	113	0.275	Е
CR2	20191016	Sunny	Moderate	Mid-Ebb	М	5.65	13:00	6.78	8.04	28.14	28.3	3.82	18	111	0.147	SE
CR2	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:01	6.84	8.07	28.73	28.16	4.16	17	111	0.262	E
CR2	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:01	6.72	8.21	28.19	27.96	3.79	18	113	0.247	E
F1A	20191016	Sunny	Moderate	Mid-Ebb	В	7.1	14:10	6.3	8.29	28.18	27.97	4.27	23	113	0.221	SE
F1A	20191016	Sunny	Moderate	Mid-Ebb	В	7.1	14:10	6.11	8.24	28.31	28.18	4.34	21	113	0.268	E
F1A	20191016	Sunny	Moderate	Mid-Ebb	М	4.05	14:11	6.27	8.11	28.15	28.1	3.65	18	113	0.138	Е
F1A	20191016	Sunny	Moderate	Mid-Ebb	М	4.05	14:11	6.32	8.25	28.5	27.99	3.94	18	113	0.248	Е
F1A	20191016	Sunny	Moderate	Mid-Ebb	S	1	14:12	5.94	8.24	28.18	28.09	3.74	18	112	0.231	SE
F1A	20191016	Sunny	Moderate	Mid-Ebb	S	1	14:12	6.75	8.23	28.56	27.9	3.55	18	113	0.204	SE
H1	20191016	Sunny	Moderate	Mid-Ebb	В	7.8	13:18	6.3	8.1	28.37	28.04	4.17	15	111	0.269	E
H1	20191016	Sunny	Moderate	Mid-Ebb	В	7.8	13:18	6.81	8.15	28.46	28.14	4.27	16	110	0.225	SE
H1	20191016	Sunny	Moderate	Mid-Ebb	М	4.4	13:19	6.29	8.25	28.47	27.92	3.71	16	111	0.275	SE
H1	20191016	Sunny	Moderate	Mid-Ebb	М	4.4	13:19	5.99	8.08	28.4	28.26	3.85	16	111	0.193	SE
H1	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:20	6.53	8.14	28.32	28.02	3.62	16	113	0.237	E
H1	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:20	6.28	8.23	28.37	27.95	3.83	15	113	0.216	SE
M1	20191016	Sunny	Moderate	Mid-Ebb	В	8.2	14:47	6.83	8.18	28.75	27.94	4.49	24	111	0.228	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
M1	20191016	Sunny	Moderate	Mid-Ebb	В	8.2	14:47	6.02	8.17	28.76	27.92	4.3	24	112	0.163	E
M1	20191016	Sunny	Moderate	Mid-Ebb	М	4.6	14:48	6.2	8.1	28.74	27.96	3.45	18	111	0.133	E
M1	20191016	Sunny	Moderate	Mid-Ebb	М	4.6	14:48	6.05	8.23	28.33	28.09	3.57	19	111	0.202	SE
M1	20191016	Sunny	Moderate	Mid-Ebb	S	1	14:49	6.04	8.24	28.72	27.91	3.45	17	112	0.154	E
M1	20191016	Sunny	Moderate	Mid-Ebb	S	1	14:49	6.28	8.25	28.7	28.04	3.95	16	111	0.224	E
S1	20191016	Sunny	Moderate	Mid-Ebb	В	4.2	12:34	6.24	8.24	28.67	27.91	3.97	15	113	0.152	E
S1	20191016	Sunny	Moderate	Mid-Ebb	В	4.2	12:34	6.04	8.24	28.64	27.99	4.4	16	113	0.147	E
S1	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:35	6.42	8.24	28.16	28.2	3.68	15	113	0.131	E
S1	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:35	6.33	8.15	28.28	28.08	3.73	15	113	0.201	E
S2A	20191016	Sunny	Moderate	Mid-Ebb	В	7.7	13:08	6.7	8.03	28.18	28.04	4.23	15	113	0.162	E
S2A	20191016	Sunny	Moderate	Mid-Ebb	В	7.7	13:08	6.29	8.04	28.68	28.2	4.26	15	112	0.133	E
S2A	20191016	Sunny	Moderate	Mid-Ebb	М	4.35	13:09	6.59	8.2	28.23	28.24	3.85	18	112	0.236	E
S2A	20191016	Sunny	Moderate	Mid-Ebb	М	4.35	13:09	6.41	8.09	28.11	28.06	3.53	17	113	0.256	E
S2A	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:10	6.57	8.13	28.51	27.95	3.61	17	114	0.254	E
S2A	20191016	Sunny	Moderate	Mid-Ebb	S	1	13:10	6.17	8.29	28.5	28.05	3.81	18	113	0.239	SE
S3	20191016	Sunny	Moderate	Mid-Ebb	В	9	12:47	5.93	8.15	28.59	28.2	4.77	19	113	0.146	E
S3	20191016	Sunny	Moderate	Mid-Ebb	В	9	12:47	5.95	8.03	28.71	28.2	4.93	17	113	0.266	E
S3	20191016	Sunny	Moderate	Mid-Ebb	М	5	12:48	6.71	8.14	28.62	28.22	4.15	16	113	0.151	E
S3	20191016	Sunny	Moderate	Mid-Ebb	М	5	12:48	6.42	8.04	28.6	28.04	4.4	16	113	0.201	E
S3	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:49	6.62	8.18	28.63	27.95	4.66	15	112	0.202	E
S3	20191016	Sunny	Moderate	Mid-Ebb	S	1	12:49	6.39	8.03	28.64	28.07	4.37	14	113	0.215	SE
B1	20191018	Sunny	Moderate	Mid-Flood	В	3.5	09:28	6.98	7.92	29.09	28.22	5.05	16	110	0.217	W
B1	20191018	Sunny	Moderate	Mid-Flood	В	3.5	09:28	6.98	8.06	28.87	28.32	5.18	15	110	0.198	NW
B1	20191018	Sunny	Moderate	Mid-Flood	S	1	09:29	6.21	7.91	29	28.47	4.76	12	111	0.113	W
B1	20191018	Sunny	Moderate	Mid-Flood	S	1	09:29	7.06	8.1	28.77	28.4	4.89	13	110	0.221	W
B2	20191018	Sunny	Moderate	Mid-Flood	В	3.4	09:49	6.3	7.88	28.72	28.29	5.02	16	110	0.118	W
B2	20191018	Sunny	Moderate	Mid-Flood	В	3.4	09:49	6.84	7.95	28.79	28.42	4.93	17	110	0.188	W
B2	20191018	Sunny	Moderate	Mid-Flood	S	1	09:50	6.86	8.02	29.11	28.24	4.85	12	110	0.216	NW
B2	20191018	Sunny	Moderate	Mid-Flood	S	1	09:50	6.66	7.87	28.91	28.2	4.8	12	110	0.172	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
В3	20191018	Sunny	Moderate	Mid-Flood	В	3.4	10:30	6.84	8.18	28.9	28.46	5.05	16	110	0.13	W
В3	20191018	Sunny	Moderate	Mid-Flood	В	3.4	10:30	7.32	7.98	28.78	28.44	5.48	17	111	0.108	W
В3	20191018	Sunny	Moderate	Mid-Flood	S	1	10:31	7	7.94	28.97	28.49	4.43	14	111	0.159	W
В3	20191018	Sunny	Moderate	Mid-Flood	S	1	10:31	7.11	8.18	28.88	28.41	4.68	15	110	0.205	W
B4	20191018	Sunny	Moderate	Mid-Flood	В	3.6	10:40	6.2	8.17	29.13	28.44	5.44	18	109	0.127	W
B4	20191018	Sunny	Moderate	Mid-Flood	В	3.6	10:40	7.04	8.08	29.06	28.54	5.23	19	110	0.173	W
B4	20191018	Sunny	Moderate	Mid-Flood	S	1	10:41	6.32	8.16	29.05	28.45	4.72	15	110	0.178	W
B4	20191018	Sunny	Moderate	Mid-Flood	S	1	10:41	7.01	8.13	28.77	28.62	4.45	16	110	0.182	W
C1A	20191018	Sunny	Moderate	Mid-Flood	В	10.5	08:47	6.31	7.85	28.99	28.34	4.92	16	112	0.181	W
C1A	20191018	Sunny	Moderate	Mid-Flood	В	10.5	08:47	6.78	7.93	29.07	28.34	4.88	18	112	0.191	W
C1A	20191018	Sunny	Moderate	Mid-Flood	М	5.75	08:48	7.27	8.14	28.78	28.3	4.79	14	110	0.166	W
C1A	20191018	Sunny	Moderate	Mid-Flood	М	5.75	08:48	6.71	7.89	28.94	28.37	4.56	13	110	0.213	NW
C1A	20191018	Sunny	Moderate	Mid-Flood	S	1	08:49	7.46	8.12	28.78	28.32	4.9	10	110	0.159	W
C1A	20191018	Sunny	Moderate	Mid-Flood	S	1	08:49	7.01	8.06	28.82	28.32	4.69	11	110	0.204	W
C2A	20191018	Sunny	Moderate	Mid-Flood	В	10.5	08:00	6.22	8.07	28.88	28.11	5.53	14	112	0.164	W
C2A	20191018	Sunny	Moderate	Mid-Flood	В	10.5	08:00	6.21	8.03	28.76	28.1	5.57	13	112	0.155	NW
C2A	20191018	Sunny	Moderate	Mid-Flood	М	5.75	08:01	7.02	8.19	29	28.22	4.85	14	112	0.109	W
C2A	20191018	Sunny	Moderate	Mid-Flood	М	5.75	08:01	7.27	7.96	29.03	28.12	5.11	14	112	0.198	W
C2A	20191018	Sunny	Moderate	Mid-Flood	S	1	08:02	7.25	7.93	29.22	28.27	5.14	14	112	0.153	W
C2A	20191018	Sunny	Moderate	Mid-Flood	S	1	08:02	6.36	7.91	29	28.14	4.92	12	113	0.208	W
CR1	20191018	Sunny	Moderate	Mid-Flood	В	11.8	08:19	7.32	7.86	28.88	28.36	5.64	11	113	0.18	W
CR1	20191018	Sunny	Moderate	Mid-Flood	В	11.8	08:19	7.49	7.85	29.16	28.18	6.01	10	112	0.143	W
CR1	20191018	Sunny	Moderate	Mid-Flood	М	6.4	08:20	6.75	7.85	29.16	28.29	5.28	11	113	0.176	NW
CR1	20191018	Sunny	Moderate	Mid-Flood	М	6.4	08:20	7.08	8.06	28.79	28.26	5.56	11	112	0.199	W
CR1	20191018	Sunny	Moderate	Mid-Flood	S	1	08:21	7.09	8.02	28.99	28.4	4.97	12	113	0.173	W
CR1	20191018	Sunny	Moderate	Mid-Flood	S	1	08:21	6.2	8.01	29.01	28.38	5.01	10	112	0.184	W
CR2	20191018	Sunny	Moderate	Mid-Flood	В	10	08:44	7.34	8.13	29.12	28.41	6.57	15	112	0.124	NW
CR2	20191018	Sunny	Moderate	Mid-Flood	В	10	08:44	6.89	7.92	28.91	28.44	6.38	16	112	0.174	W
CR2	20191018	Sunny	Moderate	Mid-Flood	М	5.5	08:45	7.23	8.16	29.1	28.28	5.81	16	113	0.213	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR2	20191018	Sunny	Moderate	Mid-Flood	М	5.5	08:45	6.79	7.92	29.22	28.26	5.8	15	112	0.199	W
CR2	20191018	Sunny	Moderate	Mid-Flood	S	1	08:46	7.09	8.14	28.75	28.39	5.91	12	112	0.206	W
CR2	20191018	Sunny	Moderate	Mid-Flood	S	1	08:46	6.25	8.16	29.13	28.19	5.74	12	113	0.209	W
F1A	20191018	Sunny	Moderate	Mid-Flood	В	7.1	09:51	7.25	7.86	28.75	28.27	5.27	13	113	0.114	W
F1A	20191018	Sunny	Moderate	Mid-Flood	В	7.1	09:51	7.04	8.19	28.78	28.32	4.89	13	112	0.195	NW
F1A	20191018	Sunny	Moderate	Mid-Flood	М	4.05	09:52	6.49	7.92	29.19	28.29	5.04	14	113	0.198	W
F1A	20191018	Sunny	Moderate	Mid-Flood	М	4.05	09:52	7.37	7.88	28.81	28.28	5.1	13	112	0.205	NW
F1A	20191018	Sunny	Moderate	Mid-Flood	S	1	09:53	6.16	8.01	28.94	28.43	4.43	12	113	0.211	W
F1A	20191018	Sunny	Moderate	Mid-Flood	S	1	09:53	7.48	8.04	29.22	28.36	4.72	13	113	0.127	W
H1	20191018	Sunny	Moderate	Mid-Flood	В	6.6	08:59	7.11	8.13	28.94	28.16	4.89	19	111	0.127	NW
H1	20191018	Sunny	Moderate	Mid-Flood	В	6.6	08:59	6.65	7.89	29.05	28.4	5.05	20	109	0.193	W
H1	20191018	Sunny	Moderate	Mid-Flood	М	3.8	09:00	7.39	8.08	29.03	28.35	4.74	20	109	0.193	NW
H1	20191018	Sunny	Moderate	Mid-Flood	М	3.8	09:00	7.01	8.01	29.1	28.3	4.94	19	110	0.117	W
H1	20191018	Sunny	Moderate	Mid-Flood	S	1	09:01	6.19	7.88	29.14	28.27	4.5	18	110	0.208	W
H1	20191018	Sunny	Moderate	Mid-Flood	S	1	09:01	6.67	8	29.15	28.3	4.67	19	110	0.217	W
M1	20191018	Sunny	Moderate	Mid-Flood	В	6.7	10:23	6.81	8.16	29.17	28.41	5.01	17	112	0.173	W
M1	20191018	Sunny	Moderate	Mid-Flood	В	6.7	10:23	6.33	8	29.21	28.41	5.3	17	112	0.131	W
M1	20191018	Sunny	Moderate	Mid-Flood	М	3.85	10:24	7.19	7.95	28.87	28.4	4.7	16	113	0.132	NW
M1	20191018	Sunny	Moderate	Mid-Flood	М	3.85	10:24	6.81	7.88	28.89	28.28	5.1	16	113	0.162	W
M1	20191018	Sunny	Moderate	Mid-Flood	S	1	10:25	6.34	8.07	28.84	28.32	4.88	16	113	0.183	NW
M1	20191018	Sunny	Moderate	Mid-Flood	S	1	10:25	7.23	8.01	28.78	28.46	4.79	16	112	0.143	W
S1	20191018	Sunny	Moderate	Mid-Flood	В	4.1	09:39	6.88	8.03	28.75	28.37	5.16	12	112	0.143	W
S1	20191018	Sunny	Moderate	Mid-Flood	В	4.1	09:39	7.18	8.07	29.11	28.48	4.91	13	111	0.134	W
S1	20191018	Sunny	Moderate	Mid-Flood	S	1	09:40	7.48	7.98	28.78	28.42	4.5	14	113	0.142	W
S1	20191018	Sunny	Moderate	Mid-Flood	S	1	09:40	7.42	7.9	29.18	28.38	4.47	15	112	0.114	NW
S2A	20191018	Sunny	Moderate	Mid-Flood	В	8.5	10:09	6.54	7.95	29.05	28.21	5.14	12	113	0.136	NW
S2A	20191018	Sunny	Moderate	Mid-Flood	В	8.5	10:09	7.36	7.87	29.15	28.19	5.15	12	113	0.199	W
S2A	20191018	Sunny	Moderate	Mid-Flood	М	4.75	10:10	6.16	7.94	28.96	28.38	4.82	12	112	0.136	W
S2A	20191018	Sunny	Moderate	Mid-Flood	М	4.75	10:10	6.3	8.06	28.75	28.38	4.84	13	112	0.191	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S2A	20191018	Sunny	Moderate	Mid-Flood	S	1	10:11	7.01	8.03	29.01	28.22	4.53	12	111	0.116	NW
S2A	20191018	Sunny	Moderate	Mid-Flood	S	1	10:11	6.15	8.02	28.92	28.38	4.54	13	112	0.208	W
S3	20191018	Sunny	Moderate	Mid-Flood	В	9.8	08:32	6.2	7.86	28.89	28.27	6.26	11	113	0.115	W
S3	20191018	Sunny	Moderate	Mid-Flood	В	9.8	08:32	6.63	8.01	29.2	28.32	6.24	12	112	0.135	W
S3	20191018	Sunny	Moderate	Mid-Flood	М	5.4	08:33	7.05	7.91	28.74	28.25	6.19	10	113	0.13	W
S3	20191018	Sunny	Moderate	Mid-Flood	М	5.4	08:33	6.39	8	29	28.21	6.11	12	113	0.119	W
S3	20191018	Sunny	Moderate	Mid-Flood	S	1	08:34	6.73	7.89	29.2	28.32	6.01	9	112	0.131	W
S3	20191018	Sunny	Moderate	Mid-Flood	S	1	08:34	7.34	8.16	29.07	28.29	6.14	9	112	0.162	W
B1	20191018	Sunny	Moderate	Mid-Ebb	В	3.9	13:29	7.07	8.15	28.82	29.32	4.54	7	112	0.116	SE
B1	20191018	Sunny	Moderate	Mid-Ebb	В	3.9	13:29	6.87	7.86	28.59	29.3	4.75	6	113	0.177	SE
B1	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:30	6.57	8.05	28.81	29.14	4.23	6	113	0.192	E
B1	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:30	6.98	7.96	28.82	29.19	4.19	6	112	0.114	E
B2	20191018	Sunny	Moderate	Mid-Ebb	В	4.1	13:50	6.64	8.1	28.71	29.16	4.79	14	113	0.15	SE
B2	20191018	Sunny	Moderate	Mid-Ebb	В	4.1	13:50	6.29	7.96	28.9	29.33	4.95	14	110	0.121	E
B2	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:51	6.95	8.12	28.61	29.3	4.39	9	112	0.188	SE
B2	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:51	7.07	7.87	28.65	29.13	4.3	11	112	0.197	SE
В3	20191018	Sunny	Moderate	Mid-Ebb	В	3.4	14:31	6.71	8.05	28.45	29.3	4.65	13	110	0.183	SE
В3	20191018	Sunny	Moderate	Mid-Ebb	В	3.4	14:31	6.71	8.02	28.56	29.17	4.58	12	110	0.156	SE
В3	20191018	Sunny	Moderate	Mid-Ebb	S	1	14:32	6.35	8.11	28.74	29.14	4.29	12	110	0.178	E
В3	20191018	Sunny	Moderate	Mid-Ebb	S	1	14:32	6.52	7.99	28.3	29.02	4.34	13	110	0.132	E
B4	20191018	Sunny	Moderate	Mid-Ebb	В	3.2	14:41	6.62	7.92	28.69	29.06	4.74	11	110	0.165	E
B4	20191018	Sunny	Moderate	Mid-Ebb	В	3.2	14:41	6.64	7.94	28.78	29.05	4.71	10	110	0.189	SE
B4	20191018	Sunny	Moderate	Mid-Ebb	S	1	14:42	6.97	7.86	28.76	29.17	4.13	12	110	0.117	SE
B4	20191018	Sunny	Moderate	Mid-Ebb	S	1	14:42	6.96	8.17	28.73	29.3	4.13	13	111	0.117	SE
C1A	20191018	Sunny	Moderate	Mid-Ebb	В	9.8	13:03	6.58	8	28.78	29.3	4.86	6	110	0.156	SE
C1A	20191018	Sunny	Moderate	Mid-Ebb	В	9.8	13:03	6.89	8.24	28.76	29.03	4.94	8	111	0.131	SE
C1A	20191018	Sunny	Moderate	Mid-Ebb	М	5.4	13:04	6.34	8.17	28.3	29.08	4.4	5	110	0.179	SE
C1A	20191018	Sunny	Moderate	Mid-Ebb	М	5.4	13:04	6.34	8.08	28.35	29.25	4.34	7	110	0.194	SE
C1A	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:05	6.56	8	28.66	29.04	4.44	4	110	0.172	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C1A	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:05	6.5	8.07	28.69	29.17	4.23	4	110	0.176	SE
C2A	20191018	Sunny	Moderate	Mid-Ebb	В	10.8	13:13	6.74	8.2	28.81	29.14	5.02	5	113	0.176	E
C2A	20191018	Sunny	Moderate	Mid-Ebb	В	10.8	13:13	7	8.23	28.56	29.22	4.94	6	112	0.124	SE
C2A	20191018	Sunny	Moderate	Mid-Ebb	М	5.9	13:14	6.8	8	28.73	29.11	4.65	7	112	0.168	Е
C2A	20191018	Sunny	Moderate	Mid-Ebb	М	5.9	13:14	6.29	8.08	28.73	29.15	4.49	6	112	0.116	Е
C2A	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:15	6.27	7.98	28.32	29.2	4.36	5	112	0.106	SE
C2A	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:15	6.49	8.02	28.38	29.28	4.68	5	112	0.13	SE
CR1	20191018	Sunny	Moderate	Mid-Ebb	В	12.2	13:30	6.48	8.06	28.49	29.08	5.36	7	112	0.097	SE
CR1	20191018	Sunny	Moderate	Mid-Ebb	В	12.2	13:30	6.68	8.07	28.36	29.17	5.12	6	113	0.121	E
CR1	20191018	Sunny	Moderate	Mid-Ebb	М	6.6	13:31	6.41	8.19	28.72	29.07	4.61	6	112	0.148	E
CR1	20191018	Sunny	Moderate	Mid-Ebb	М	6.6	13:31	6.27	7.91	28.56	29.16	4.46	5	112	0.126	E
CR1	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:32	6.86	7.95	28.67	29.27	4.79	6	112	0.201	E
CR1	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:32	6.6	8.07	28.4	29.24	4.84	5	113	0.121	SE
CR2	20191018	Sunny	Moderate	Mid-Ebb	В	10.2	13:55	7	8.03	28.64	29.14	5.12	10	110	0.16	SE
CR2	20191018	Sunny	Moderate	Mid-Ebb	В	10.2	13:55	6.33	8.24	28.4	29.24	5.58	10	110	0.114	SE
CR2	20191018	Sunny	Moderate	Mid-Ebb	М	5.6	13:56	6.92	7.91	28.67	29.11	5.18	10	112	0.154	E
CR2	20191018	Sunny	Moderate	Mid-Ebb	М	5.6	13:56	6.58	8.04	28.4	29.08	4.86	9	110	0.167	E
CR2	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:57	6.96	8.11	28.9	29.19	5.06	7	113	0.175	SE
CR2	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:57	6.35	7.92	28.52	29.04	4.7	6	113	0.097	Е
F1A	20191018	Sunny	Moderate	Mid-Ebb	В	7.7	15:00	6.23	8.15	28.62	29.02	4.64	15	113	0.104	SE
F1A	20191018	Sunny	Moderate	Mid-Ebb	В	7.7	15:00	7.03	7.87	28.7	29.25	4.82	15	112	0.181	SE
F1A	20191018	Sunny	Moderate	Mid-Ebb	М	4.35	15:01	6.5	7.98	28.6	29.25	4.49	10	112	0.132	SE
F1A	20191018	Sunny	Moderate	Mid-Ebb	М	4.35	15:01	7.05	7.9	28.74	29.18	4.22	12	112	0.172	SE
F1A	20191018	Sunny	Moderate	Mid-Ebb	S	1	15:02	6.77	8.13	28.82	29.07	4.16	4	113	0.152	SE
F1A	20191018	Sunny	Moderate	Mid-Ebb	S	1	15:02	6.72	8.24	28.44	29.16	4.28	5	112	0.106	E
H1	20191018	Sunny	Moderate	Mid-Ebb	В	7.6	14:10	6.6	7.92	28.3	29.23	4.49	6	110	0.174	SE
H1	20191018	Sunny	Moderate	Mid-Ebb	В	7.6	14:10	6.97	7.96	28.52	29.08	4.78	5	110	0.118	SE
H1	20191018	Sunny	Moderate	Mid-Ebb	М	4.3	14:11	6.89	8.04	28.85	29.08	4.46	5	110	0.156	SE
H1	20191018	Sunny	Moderate	Mid-Ebb	М	4.3	14:11	6.53	8.22	28.31	29.19	4	4	110	0.118	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
H1	20191018	Sunny	Moderate	Mid-Ebb	S	1	14:12	7.03	8.23	28.43	29.08	4.39	6	111	0.189	SE
H1	20191018	Sunny	Moderate	Mid-Ebb	S	1	14:12	6.75	8.23	28.42	29.29	4.1	5	109	0.174	SE
M1	20191018	Sunny	Moderate	Mid-Ebb	В	8.1	15:37	6.32	8.02	28.32	29.22	4.86	10	110	0.099	E
M1	20191018	Sunny	Moderate	Mid-Ebb	В	8.1	15:37	6.98	8.19	28.72	29.1	4.91	9	110	0.12	E
M1	20191018	Sunny	Moderate	Mid-Ebb	М	4.55	15:38	6.56	8.21	28.57	29.02	4.01	11	110	0.171	SE
M1	20191018	Sunny	Moderate	Mid-Ebb	М	4.55	15:38	7.05	8.03	28.71	29	4.2	12	110	0.172	SE
M1	20191018	Sunny	Moderate	Mid-Ebb	S	1	15:39	7.03	8.03	28.89	29.21	4.18	11	110	0.178	E
M1	20191018	Sunny	Moderate	Mid-Ebb	S	1	15:39	6.67	8.1	28.4	29.18	4.4	11	109	0.101	SE
S1	20191018	Sunny	Moderate	Mid-Ebb	В	3.8	13:40	6.79	7.92	28.69	29.29	4.88	14	112	0.112	SE
S1	20191018	Sunny	Moderate	Mid-Ebb	В	3.8	13:40	6.39	8.22	28.64	29.02	4.84	13	112	0.174	E
S1	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:41	7.01	8.02	28.51	29.04	4.06	12	112	0.098	SE
S1	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:41	6.9	8.18	28.72	29.26	4.37	11	112	0.105	SE
S2A	20191018	Sunny	Moderate	Mid-Ebb	В	8	14:10	6.43	7.96	28.64	29.23	4.8	14	112	0.114	SE
S2A	20191018	Sunny	Moderate	Mid-Ebb	В	8	14:10	7.03	7.99	28.82	29.07	4.91	15	113	0.131	SE
S2A	20191018	Sunny	Moderate	Mid-Ebb	М	4.5	14:11	6.98	8.15	28.72	29.14	4.42	14	112	0.192	SE
S2A	20191018	Sunny	Moderate	Mid-Ebb	М	4.5	14:11	6.64	8.15	28.55	29.12	4.29	14	112	0.181	SE
S2A	20191018	Sunny	Moderate	Mid-Ebb	S	1	14:12	6.44	8.12	28.89	29.12	4.13	13	112	0.145	SE
S2A	20191018	Sunny	Moderate	Mid-Ebb	S	1	14:12	6.93	8.14	28.89	29.13	3.93	12	112	0.161	SE
S3	20191018	Sunny	Moderate	Mid-Ebb	В	8.9	13:43	6.73	8.06	28.9	29.02	5.51	7	112	0.2	SE
S3	20191018	Sunny	Moderate	Mid-Ebb	В	8.9	13:43	6.38	8.15	28.51	29.17	5.65	7	112	0.105	SE
S3	20191018	Sunny	Moderate	Mid-Ebb	М	4.95	13:44	7	8.08	28.36	29.13	4.88	8	113	0.177	SE
S3	20191018	Sunny	Moderate	Mid-Ebb	М	4.95	13:44	6.6	8	28.53	29.16	4.95	9	112	0.165	E
S3	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:45	6.33	7.98	28.53	29.19	5.05	9	112	0.184	SE
S3	20191018	Sunny	Moderate	Mid-Ebb	S	1	13:45	6.97	8.02	28.67	29.09	5.5	9	112	0.125	E
B1	20191022	Sunny	Moderate	Mid-Ebb	В	3.7	08:56	6.07	8.02	29.53	27.81	4.75	12	113	0.207	SE
B1	20191022	Sunny	Moderate	Mid-Ebb	В	3.7	08:56	6.08	8.09	29.35	27.9	5.09	14	114	0.181	SE
B1	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:57	6.46	8.08	29.46	27.83	4.22	13	114	0.277	E
B1	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:57	6.81	7.87	29.45	28.07	4.18	12	113	0.157	E
B2	20191022	Sunny	Moderate	Mid-Ebb	В	4.2	09:16	6.15	7.83	29.5	27.95	4.88	10	112	0.275	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B2	20191022	Sunny	Moderate	Mid-Ebb	В	4.2	09:16	6.87	7.84	29.45	27.99	4.92	9	113	0.258	SE
B2	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:17	6.43	8.12	29.62	27.82	4.49	11	114	0.134	SE
B2	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:17	6.86	8.01	29.31	27.82	4.25	11	113	0.226	E
В3	20191022	Sunny	Moderate	Mid-Ebb	В	4.2	10:01	5.87	7.83	29.3	28.14	4.7	11	113	0.229	E
В3	20191022	Sunny	Moderate	Mid-Ebb	В	4.2	10:01	6.17	7.84	29.32	28.2	4.76	11	113	0.258	SE
В3	20191022	Sunny	Moderate	Mid-Ebb	S	1	10:02	6.57	8.09	29.34	28	4.51	10	112	0.147	E
В3	20191022	Sunny	Moderate	Mid-Ebb	S	1	10:02	6.25	8.09	29.6	28.11	4.4	10	113	0.119	E
B4	20191022	Sunny	Moderate	Mid-Ebb	В	4.1	10:12	6	7.86	29.69	28.27	4.91	9	113	0.165	SE
B4	20191022	Sunny	Moderate	Mid-Ebb	В	4.1	10:12	6.47	8.06	29.34	28.26	4.82	10	113	0.229	SE
B4	20191022	Sunny	Moderate	Mid-Ebb	S	1	10:13	6.51	7.9	29.46	28.15	4.64	10	113	0.22	E
B4	20191022	Sunny	Moderate	Mid-Ebb	S	1	10:13	6.17	8.1	29.3	28.2	4.26	9	112	0.161	SE
C1A	20191022	Sunny	Moderate	Mid-Ebb	В	10.1	08:30	6.69	8.14	29.41	27.85	4.78	15	111	0.248	SE
C1A	20191022	Sunny	Moderate	Mid-Ebb	В	10.1	08:30	6.8	8	29.53	28.04	5.12	15	113	0.254	E
C1A	20191022	Sunny	Moderate	Mid-Ebb	М	5.55	08:31	6.14	7.95	29.56	28.03	4.44	15	112	0.145	SE
C1A	20191022	Sunny	Moderate	Mid-Ebb	М	5.55	08:31	6.27	7.98	29.45	27.86	4.26	14	113	0.236	SE
C1A	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:32	6.74	7.89	29.32	27.99	4.31	12	113	0.161	E
C1A	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:32	5.83	8	29.37	28.01	4.26	11	113	0.262	SE
C2A	20191022	Sunny	Moderate	Mid-Ebb	В	10.6	08:31	5.86	7.84	29.4	27.91	4.98	16	113	0.191	E
C2A	20191022	Sunny	Moderate	Mid-Ebb	В	10.6	08:31	5.89	7.88	29.56	27.95	4.61	16	113	0.276	SE
C2A	20191022	Sunny	Moderate	Mid-Ebb	М	5.8	08:32	6.33	7.87	29.45	28.01	4.12	15	112	0.168	E
C2A	20191022	Sunny	Moderate	Mid-Ebb	М	5.8	08:32	6.7	8	29.57	28.08	4.14	16	113	0.237	SE
C2A	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:33	6.68	7.93	29.39	27.81	4.18	11	113	0.141	E
C2A	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:33	6.62	7.95	29.66	28.04	4.33	12	113	0.202	SE
CR1	20191022	Sunny	Moderate	Mid-Ebb	В	11.5	08:44	6.05	8.01	29.4	28.07	4.82	3	113	0.282	E
CR1	20191022	Sunny	Moderate	Mid-Ebb	В	11.5	08:44	5.94	8.03	29.64	27.88	4.6	3	113	0.221	SE
CR1	20191022	Sunny	Moderate	Mid-Ebb	М	6.25	08:45	6.6	8.14	29.31	27.9	4.27	4	113	0.122	E
CR1	20191022	Sunny	Moderate	Mid-Ebb	М	6.25	08:45	6.82	8.05	29.31	27.97	4.34	4	113	0.145	SE
CR1	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:46	5.88	7.82	29.45	27.9	4.15	4	113	0.281	SE
CR1	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:46	6.57	7.92	29.56	27.83	4.38	4	113	0.12	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR2	20191022	Sunny	Moderate	Mid-Ebb	В	10.1	08:57	6.58	8.14	29.51	27.84	6.16	3	110	0.155	SE
CR2	20191022	Sunny	Moderate	Mid-Ebb	В	10.1	08:57	5.84	7.85	29.66	27.93	5.71	4	111	0.239	SE
CR2	20191022	Sunny	Moderate	Mid-Ebb	М	5.55	08:58	6.03	8.12	29.35	27.92	5.2	4	114	0.18	E
CR2	20191022	Sunny	Moderate	Mid-Ebb	М	5.55	08:58	5.92	8.01	29.59	28.06	5.67	3	111	0.136	E
CR2	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:59	5.83	7.86	29.42	27.98	5.17	4	113	0.187	SE
CR2	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:59	6.69	8.12	29.64	27.96	5.54	4	113	0.245	SE
F1A	20191022	Sunny	Moderate	Mid-Ebb	В	8.1	09:51	6.74	8.03	29.64	27.91	4.81	16	113	0.203	SE
F1A	20191022	Sunny	Moderate	Mid-Ebb	В	8.1	09:51	6.28	7.95	29.6	27.93	4.95	16	113	0.198	SE
F1A	20191022	Sunny	Moderate	Mid-Ebb	М	4.55	09:52	6.65	7.99	29.61	27.95	4.49	15	113	0.279	SE
F1A	20191022	Sunny	Moderate	Mid-Ebb	М	4.55	09:52	6.08	8	29.48	28.05	4.09	15	113	0.142	E
F1A	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:53	6.55	8.09	29.45	28.01	4.2	15	113	0.198	SE
F1A	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:53	6.45	8.1	29.6	27.9	4.31	14	113	0.269	E
H1	20191022	Sunny	Moderate	Mid-Ebb	В	7.2	09:07	6.37	7.9	29.42	27.89	5.13	14	113	0.276	SE
H1	20191022	Sunny	Moderate	Mid-Ebb	В	7.2	09:07	6.61	8.06	29.36	27.84	4.95	14	113	0.182	SE
H1	20191022	Sunny	Moderate	Mid-Ebb	М	4.1	09:08	6.48	7.97	29.36	28.08	4.6	12	113	0.122	SE
H1	20191022	Sunny	Moderate	Mid-Ebb	М	4.1	09:08	6.45	7.86	29.47	28.07	4.07	11	113	0.192	E
H1	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:09	6.36	7.97	29.3	27.98	4.03	10	113	0.175	SE
H1	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:09	6.08	7.89	29.32	28	4.06	11	113	0.259	SE
M1	20191022	Sunny	Moderate	Mid-Ebb	В	8.9	10:19	5.97	7.89	29.63	28	4.75	4	111	0.223	SE
M1	20191022	Sunny	Moderate	Mid-Ebb	В	8.9	10:19	6.4	7.93	29.43	28	4.65	4	111	0.224	E
M1	20191022	Sunny	Moderate	Mid-Ebb	М	4.95	10:20	6.56	7.86	29.56	27.84	4.44	3	110	0.155	SE
M1	20191022	Sunny	Moderate	Mid-Ebb	М	4.95	10:20	6.77	7.9	29.51	28.06	4.52	3	111	0.208	SE
M1	20191022	Sunny	Moderate	Mid-Ebb	S	1	10:21	6.15	8.05	29.38	27.94	4.33	3	110	0.272	SE
M1	20191022	Sunny	Moderate	Mid-Ebb	S	1	10:21	6.62	7.99	29.64	28.03	4.07	3	111	0.266	SE
S1	20191022	Sunny	Moderate	Mid-Ebb	В	4.1	09:06	6.82	7.9	29.53	28.04	4.58	5	113	0.116	E
S1	20191022	Sunny	Moderate	Mid-Ebb	В	4.1	09:06	6.86	8	29.44	27.82	4.63	5	113	0.234	E
S1	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:07	6.85	7.92	29.64	28.07	4.36	5	113	0.261	E
S1	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:07	6.3	7.83	29.35	27.88	4.61	6	113	0.175	SE
S2A	20191022	Sunny	Moderate	Mid-Ebb	В	8.5	09:35	6.71	7.83	29.59	28.07	4.94	4	112	0.176	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S2A	20191022	Sunny	Moderate	Mid-Ebb	В	8.5	09:35	6	8.09	29.47	27.81	4.79	4	114	0.183	E
S2A	20191022	Sunny	Moderate	Mid-Ebb	М	4.75	09:36	6.84	7.87	29.3	27.98	4.63	3	113	0.175	SE
S2A	20191022	Sunny	Moderate	Mid-Ebb	М	4.75	09:36	5.99	7.99	29.48	27.9	4.12	3	113	0.164	SE
S2A	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:37	6.43	7.94	29.45	27.85	4.48	4	114	0.237	SE
S2A	20191022	Sunny	Moderate	Mid-Ebb	S	1	09:37	6	8.11	29.62	28.07	4.5	4	113	0.204	SE
S3	20191022	Sunny	Moderate	Mid-Ebb	В	9.9	08:50	6.07	8.21	29.72	27.99	6.97	4	113	0.203	E
S3	20191022	Sunny	Moderate	Mid-Ebb	В	9.9	08:50	6.37	8.18	29.5	28.1	6.81	3	113	0.204	SE
S3	20191022	Sunny	Moderate	Mid-Ebb	М	5.45	08:51	6.96	8.03	29.43	28.09	5.97	4	114	0.269	SE
S3	20191022	Sunny	Moderate	Mid-Ebb	М	5.45	08:51	6.06	8	29.57	28.08	6.51	3	113	0.22	SE
S3	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:52	6.56	8.02	29.47	27.83	6.22	4	113	0.199	SE
S3	20191022	Sunny	Moderate	Mid-Ebb	S	1	08:52	6.73	7.91	29.51	28.03	6.09	4	113	0.218	SE
B1	20191022	Sunny	Moderate	Mid-Flood	В	3.5	12:57	6.5	7.9	30.4	28.55	4.51	4	113	0.185	W
B1	20191022	Sunny	Moderate	Mid-Flood	В	3.5	12:57	6.17	8.06	29.63	28.47	4.66	4	112	0.189	W
B1	20191022	Sunny	Moderate	Mid-Flood	S	1	12:58	6.79	8.03	29.7	28.5	4.3	4	112	0.271	NW
B1	20191022	Sunny	Moderate	Mid-Flood	S	1	12:58	6.66	8	30.03	28.49	4	5	113	0.226	W
B2	20191022	Sunny	Moderate	Mid-Flood	В	3.5	13:17	6.46	7.91	30.15	28.46	4.61	10	112	0.302	W
B2	20191022	Sunny	Moderate	Mid-Flood	В	3.5	13:17	6.41	8.06	29.64	28.36	4.44	10	113	0.224	W
B2	20191022	Sunny	Moderate	Mid-Flood	S	1	13:18	6.56	8.15	30.54	28.45	4.05	5	112	0.316	W
B2	20191022	Sunny	Moderate	Mid-Flood	S	1	13:18	6.69	8.16	29.79	28.44	4.05	6	113	0.241	W
В3	20191022	Sunny	Moderate	Mid-Flood	В	3.8	14:02	6.82	8.06	30.38	28.31	4.81	9	113	0.252	W
В3	20191022	Sunny	Moderate	Mid-Flood	В	3.8	14:02	6.84	7.88	29.75	28.34	4.53	8	112	0.311	W
В3	20191022	Sunny	Moderate	Mid-Flood	S	1	14:03	6.66	8	29.94	28.39	3.92	10	113	0.149	W
В3	20191022	Sunny	Moderate	Mid-Flood	S	1	14:03	6.65	8.09	30.13	28.51	3.85	9	113	0.221	NW
B4	20191022	Sunny	Moderate	Mid-Flood	В	4.1	14:13	6.7	8.07	30.12	28.46	4.59	8	113	0.249	W
B4	20191022	Sunny	Moderate	Mid-Flood	В	4.1	14:13	6.8	8	30.16	28.34	4.7	8	113	0.254	W
B4	20191022	Sunny	Moderate	Mid-Flood	S	1	14:14	6.9	7.86	30.29	28.37	4.23	7	113	0.31	W
B4	20191022	Sunny	Moderate	Mid-Flood	S	1	14:14	6.5	7.94	29.62	28.22	3.86	8	113	0.183	W
C1A	20191022	Sunny	Moderate	Mid-Flood	В	10.9	12:32	6.82	8.12	30.15	28.54	4.31	8	112	0.28	W
C1A	20191022	Sunny	Moderate	Mid-Flood	В	10.9	12:32	6.86	7.94	29.91	28.39	4.28	10	113	0.311	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C1A	20191022	Sunny	Moderate	Mid-Flood	М	5.95	12:33	6.14	7.9	30.14	28.44	4.07	6	112	0.203	W
C1A	20191022	Sunny	Moderate	Mid-Flood	М	5.95	12:33	6.15	8.01	29.9	28.41	4.33	8	113	0.185	NW
C1A	20191022	Sunny	Moderate	Mid-Flood	S	1	12:34	6.94	7.94	30.51	28.55	4.13	8	113	0.245	W
C1A	20191022	Sunny	Moderate	Mid-Flood	S	1	12:34	6.9	8.14	30.09	28.51	3.95	6	112	0.254	W
C2A	20191022	Sunny	Moderate	Mid-Flood	В	11	12:26	6.46	8.14	29.69	28.4	4.43	8	112	0.17	W
C2A	20191022	Sunny	Moderate	Mid-Flood	В	11	12:26	6.8	8.17	30.45	28.35	4.37	9	112	0.172	NW
C2A	20191022	Sunny	Moderate	Mid-Flood	М	6	12:27	6.17	8.07	29.93	28.4	4.24	7	113	0.223	W
C2A	20191022	Sunny	Moderate	Mid-Flood	М	6	12:27	6.8	8.18	29.63	28.36	4.03	7	113	0.229	W
C2A	20191022	Sunny	Moderate	Mid-Flood	S	1	12:28	6.96	7.96	30.38	28.56	4.18	7	113	0.161	NW
C2A	20191022	Sunny	Moderate	Mid-Flood	S	1	12:28	6.54	8.03	29.83	28.49	4.33	7	113	0.23	W
CR1	20191022	Sunny	Moderate	Mid-Flood	В	11.2	12:43	6.47	7.96	29.87	28.38	5.14	6	113	0.244	W
CR1	20191022	Sunny	Moderate	Mid-Flood	В	11.2	12:43	6.32	8.16	29.73	28.56	5.51	6	113	0.157	NW
CR1	20191022	Sunny	Moderate	Mid-Flood	М	6.1	12:44	6.8	8.04	30.18	28.41	4.96	7	113	0.238	NW
CR1	20191022	Sunny	Moderate	Mid-Flood	М	6.1	12:44	6.12	8.05	29.79	28.53	5.15	6	113	0.226	NW
CR1	20191022	Sunny	Moderate	Mid-Flood	S	1	12:45	6.49	7.95	29.84	28.37	4.7	6	113	0.267	W
CR1	20191022	Sunny	Moderate	Mid-Flood	S	1	12:45	6.74	8.01	30.32	28.42	4.72	7	113	0.301	NW
CR2	20191022	Sunny	Moderate	Mid-Flood	В	10.9	13:04	6.43	8.14	29.78	28.43	5.91	6	113	0.276	W
CR2	20191022	Sunny	Moderate	Mid-Flood	В	10.9	13:04	6.85	8.18	30.55	28.32	5.6	7	113	0.274	W
CR2	20191022	Sunny	Moderate	Mid-Flood	М	5.95	13:05	6.57	8.19	29.83	28.33	5.26	6	113	0.157	NW
CR2	20191022	Sunny	Moderate	Mid-Flood	М	5.95	13:05	6.35	7.86	29.6	28.3	5.27	5	113	0.292	NW
CR2	20191022	Sunny	Moderate	Mid-Flood	S	1	13:06	6.38	7.99	29.69	28.41	5.17	5	113	0.152	W
CR2	20191022	Sunny	Moderate	Mid-Flood	S	1	13:06	6.9	8.06	30.32	28.43	5.21	6	113	0.273	W
F1A	20191022	Sunny	Moderate	Mid-Flood	В	6.9	14:12	6.48	8.02	30.06	28.51	4.49	7	112	0.21	W
F1A	20191022	Sunny	Moderate	Mid-Flood	В	6.9	14:12	6.28	8.18	30.08	28.57	4.7	7	112	0.187	W
F1A	20191022	Sunny	Moderate	Mid-Flood	М	3.95	14:13	6.08	8.18	30.44	28.2	4.49	7	113	0.194	NW
F1A	20191022	Sunny	Moderate	Mid-Flood	М	3.95	14:13	6.15	8.13	30.22	28.5	4.01	7	113	0.224	NW
F1A	20191022	Sunny	Moderate	Mid-Flood	S	1	14:14	6.19	8.06	29.96	28.36	4.31	8	113	0.189	W
F1A	20191022	Sunny	Moderate	Mid-Flood	S	1	14:14	6.55	7.94	30.06	28.22	4.19	8	113	0.257	W
H1	20191022	Sunny	Moderate	Mid-Flood	В	7.5	13:20	6.96	8.09	30.05	28.28	4.62	10	113	0.273	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
H1	20191022	Sunny	Moderate	Mid-Flood	В	7.5	13:20	6.07	8.08	29.61	28.51	4.62	9	113	0.32	W
H1	20191022	Sunny	Moderate	Mid-Flood	М	4.25	13:21	6.95	8.12	29.99	28.27	3.98	8	113	0.25	W
H1	20191022	Sunny	Moderate	Mid-Flood	М	4.25	13:21	6.48	8.08	29.81	28.4	4.4	10	113	0.268	W
H1	20191022	Sunny	Moderate	Mid-Flood	S	1	13:22	6.56	8.05	30.06	28.49	3.92	9	112	0.313	NW
H1	20191022	Sunny	Moderate	Mid-Flood	S	1	13:22	6.16	8	30.45	28.34	3.84	9	113	0.198	W
M1	20191022	Sunny	Moderate	Mid-Flood	В	6.5	14:43	6.64	8.02	30.43	28.51	4.6	13	114	0.187	W
M1	20191022	Sunny	Moderate	Mid-Flood	В	6.5	14:43	6.24	8	30.19	28.21	4.59	13	113	0.242	W
M1	20191022	Sunny	Moderate	Mid-Flood	М	3.75	14:44	6.44	8	30.55	28.54	4.19	11	113	0.271	W
M1	20191022	Sunny	Moderate	Mid-Flood	М	3.75	14:44	6.55	7.99	30.11	28.4	4.33	10	113	0.141	W
M1	20191022	Sunny	Moderate	Mid-Flood	S	1	14:45	6.55	7.88	30.07	28.52	3.99	8	113	0.138	W
M1	20191022	Sunny	Moderate	Mid-Flood	S	1	14:45	6.9	8.19	29.98	28.43	4.19	9	113	0.252	W
S1	20191022	Sunny	Moderate	Mid-Flood	В	4.5	13:07	6.94	8.04	30.5	28.31	4.35	9	113	0.272	W
S1	20191022	Sunny	Moderate	Mid-Flood	В	4.5	13:07	6.57	8.18	30.22	28.26	4.7	11	113	0.315	W
S1	20191022	Sunny	Moderate	Mid-Flood	S	1	13:08	6.55	7.98	29.63	28.46	3.8	6	113	0.315	W
S1	20191022	Sunny	Moderate	Mid-Flood	S	1	13:08	6.55	8.18	30.2	28.27	3.85	7	112	0.198	W
S2A	20191022	Sunny	Moderate	Mid-Flood	В	8.1	13:36	6.99	8.13	30.05	28.27	4.86	10	113	0.296	W
S2A	20191022	Sunny	Moderate	Mid-Flood	В	8.1	13:36	6.27	8.11	29.87	28.51	4.34	10	113	0.239	W
S2A	20191022	Sunny	Moderate	Mid-Flood	М	4.55	13:37	6.91	8.04	29.98	28.39	4.15	10	112	0.297	W
S2A	20191022	Sunny	Moderate	Mid-Flood	М	4.55	13:37	7	7.96	30.27	28.45	4.51	11	113	0.229	
S2A	20191022	Sunny	Moderate	Mid-Flood	S	1	13:38	6.33	7.96	30.49	28.28	3.87	8	112	0.217	W
S2A	20191022	Sunny	Moderate	Mid-Flood	S	1	13:38	6.17	8.05	30.02	28.34	4.11	8	113	0.242	NW
S3	20191022	Sunny	Moderate	Mid-Flood	В	8.1	12:53	6.43	8.19	29.7	28.34	6.76	6	112	0.182	W
S3	20191022	Sunny	Moderate	Mid-Flood	В	8.1	12:53	6.82	8	29.82	28.42	7	7	112	0.249	W
S3	20191022	Sunny	Moderate	Mid-Flood	М	4.55	12:54	6.96	7.86	29.91	28.38	6.15	6	113	0.297	W
S3	20191022	Sunny	Moderate	Mid-Flood	М	4.55	12:54	6.3	7.95	30.48	28.44	6.44	7	113	0.26	W
S3	20191022	Sunny	Moderate	Mid-Flood	S	1	12:55	6.21	7.87	30.39	28.52	6	7	112	0.239	NW
S3	20191022	Sunny	Moderate	Mid-Flood	S	1	12:55	6.78	8.18	29.79	28.37	5.87	6	112	0.259	NW
B1	20191024	Sunny	Moderate	Mid-Ebb	В	3.5	08:47	6.5	8.13	27.54	28.24	3.67	16	113	0.143	SE
B1	20191024	Sunny	Moderate	Mid-Ebb	В	3.5	08:47	6.66	8.03	27.58	28.43	3.87	14	113	0.179	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B1	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:48	6.69	7.93	27.55	28.27	3.4	12	113	0.14	E
B1	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:48	6.29	7.97	27.46	28.23	3.19	12	113	0.218	SE
B2	20191024	Sunny	Moderate	Mid-Ebb	В	4.4	09:09	7.04	8.23	27.35	28.32	3.86	10	113	0.21	SE
B2	20191024	Sunny	Moderate	Mid-Ebb	В	4.4	09:09	6.41	8.23	27.32	28.38	3.69	11	113	0.14	SE
B2	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:10	6.83	8	27.59	28.43	3.34	7	113	0.25	E
B2	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:10	6.77	8.08	27.31	28.27	3.64	8	113	0.139	E
В3	20191024	Sunny	Moderate	Mid-Ebb	В	4.4	09:19	7.04	8.08	27.51	28.42	4.06	13	113	0.229	SE
В3	20191024	Sunny	Moderate	Mid-Ebb	В	4.4	09:19	6.32	7.87	27.6	28.42	3.97	12	112	0.167	SE
В3	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:20	6.94	8.18	27.62	28.48	3.42	8	113	0.247	SE
В3	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:20	6.41	8.02	27.57	28.26	3.6	9	113	0.276	E
B4	20191024	Sunny	Moderate	Mid-Ebb	В	3.3	09:31	6.79	8.1	27.43	28.42	4.3	16	113	0.131	SE
B4	20191024	Sunny	Moderate	Mid-Ebb	В	3.3	09:31	6.41	8.14	27.52	28.53	4.26	15	113	0.198	SE
B4	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:32	6.84	8.06	27.53	28.46	3.69	12	113	0.147	SE
B4	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:32	6.46	8.19	27.31	28.49	3.25	10	113	0.139	SE
C1A	20191024	Sunny	Moderate	Mid-Ebb	В	8.4	08:18	6.48	7.99	27.63	28.36	4	13	113	0.124	E
C1A	20191024	Sunny	Moderate	Mid-Ebb	В	8.4	08:18	6.64	7.97	27.46	28.15	3.77	12	113	0.168	SE
C1A	20191024	Sunny	Moderate	Mid-Ebb	М	4.7	08:19	6.87	8.24	27.5	28.36	3.16	12	113	0.164	SE
C1A	20191024	Sunny	Moderate	Mid-Ebb	М	4.7	08:19	7	8.19	27.52	28.28	3.21	12	114	0.181	SE
C1A	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:20	6.55	7.89	27.56	28.18	3.12	11	113	0.192	SE
C1A	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:20	6.51	8.17	27.39	28.34	3.48	12	113	0.123	SE
C2A	20191024	Sunny	Moderate	Mid-Ebb	В	11.5	08:19	6.49	8.07	27.61	28.13	3.7	12	113	0.153	E
C2A	20191024	Sunny	Moderate	Mid-Ebb	В	11.5	08:19	6.22	7.99	27.41	28.26	3.77	12	113	0.163	SE
C2A	20191024	Sunny	Moderate	Mid-Ebb	М	6.25	08:20	6.85	8.15	27.33	28.16	3.57	12	114	0.255	SE
C2A	20191024	Sunny	Moderate	Mid-Ebb	М	6.25	08:20	6.71	7.88	27.68	28.34	3.22	13	114	0.206	SE
C2A	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:21	6.34	8.23	27.39	28.16	3.27	7	113	0.166	SE
C2A	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:21	6.25	8.09	27.58	28.24	3.39	8	113	0.12	SE
CR1	20191024	Sunny	Moderate	Mid-Ebb	В	12.5	08:30	6.89	8.2	27.55	28.36	3.68	6	113	0.183	E
CR1	20191024	Sunny	Moderate	Mid-Ebb	В	12.5	08:30	6.33	7.91	27.48	28.31	4.07	7	113	0.147	SE
CR1	20191024	Sunny	Moderate	Mid-Ebb	М	6.75	08:31	6.3	8.02	27.38	28.17	3.13	10	113	0.199	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR1	20191024	Sunny	Moderate	Mid-Ebb	М	6.75	08:31	6.52	8.08	27.55	28.11	3.37	8	112	0.199	SE
CR1	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:32	6.97	8.07	27.39	28.31	3.62	9	113	0.122	SE
CR1	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:32	7.08	8.12	27.61	28.16	3.6	10	113	0.145	E
CR2	20191024	Sunny	Moderate	Mid-Ebb	В	11	09:54	6.54	8.11	27.61	28.29	3.98	7	109	0.261	E
CR2	20191024	Sunny	Moderate	Mid-Ebb	В	11	09:54	6.26	7.9	27.39	28.48	4.29	6	112	0.135	SE
CR2	20191024	Sunny	Moderate	Mid-Ebb	М	6	09:55	6.98	8.19	27.36	28.38	3.59	8	114	0.28	E
CR2	20191024	Sunny	Moderate	Mid-Ebb	М	6	09:55	6.79	8.15	27.45	28.48	3.66	8	113	0.213	SE
CR2	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:56	6.75	8.1	27.34	28.41	3.58	5	113	0.226	E
CR2	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:56	6.45	8.11	27.3	28.25	3.38	6	113	0.241	SE
F1A	20191024	Sunny	Moderate	Mid-Ebb	В	8	10:02	6.7	8.16	27.64	28.38	3.69	14	113	0.196	SE
F1A	20191024	Sunny	Moderate	Mid-Ebb	В	8	10:02	6.71	8.17	27.38	28.32	3.71	15	114	0.248	SE
F1A	20191024	Sunny	Moderate	Mid-Ebb	М	4.5	10:03	6.71	8.06	27.5	28.3	3.38	10	113	0.272	SE
F1A	20191024	Sunny	Moderate	Mid-Ebb	М	4.5	10:03	6.29	8.17	27.45	28.26	3.42	10	113	0.258	SE
F1A	20191024	Sunny	Moderate	Mid-Ebb	S	1	10:04	6.67	8.02	27.35	28.4	3.49	10	113	0.161	SE
F1A	20191024	Sunny	Moderate	Mid-Ebb	S	1	10:04	6.56	7.86	27.57	28.42	3.19	8	112	0.137	SE
H1	20191024	Sunny	Moderate	Mid-Ebb	В	7.2	08:58	6.29	7.87	27.44	28.28	3.84	15	113	0.27	E
H1	20191024	Sunny	Moderate	Mid-Ebb	В	7.2	08:58	6.61	7.92	27.32	28.4	4.11	15	113	0.162	E
H1	20191024	Sunny	Moderate	Mid-Ebb	М	4.1	08:59	7.1	7.86	27.64	28.44	3.12	15	113	0.121	E
H1	20191024	Sunny	Moderate	Mid-Ebb	М	4.1	08:59	6.72	8.03	27.43	28.21	3.18	16	113	0.13	SE
H1	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:00	6.79	7.97	27.69	28.26	3.37	15	113	0.261	SE
H1	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:00	6.33	8.19	27.43	28.2	3.33	15	113	0.281	SE
M1	20191024	Sunny	Moderate	Mid-Ebb	В	8.6	10:34	6.43	8.15	27.33	28.35	3.83	9	113	0.2	E
M1	20191024	Sunny	Moderate	Mid-Ebb	В	8.6	10:34	6.59	8.12	27.6	28.51	3.85	10	112	0.14	SE
M1	20191024	Sunny	Moderate	Mid-Ebb	М	4.8	10:35	6.66	8.02	27.42	28.5	3.17	6	113	0.178	SE
M1	20191024	Sunny	Moderate	Mid-Ebb	М	4.8	10:35	6.78	8.05	27.57	28.39	3.52	8	113	0.227	SE
M1	20191024	Sunny	Moderate	Mid-Ebb	S	1	10:36	6.54	8.23	27.41	28.47	3.14	6	112	0.176	E
M1	20191024	Sunny	Moderate	Mid-Ebb	S	1	10:36	6.29	8.05	27.36	28.48	3.59	7	112	0.172	SE
S1	20191024	Sunny	Moderate	Mid-Ebb	В	3.8	08:58	6.99	8.21	27.34	28.35	4.1	10	114	0.254	E
S1	20191024	Sunny	Moderate	Mid-Ebb	В	3.8	08:58	7.07	8.14	27.46	28.39	3.68	11	113	0.122	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S1	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:59	6.55	8.04	27.7	28.26	3.41	10	113	0.266	SE
S1	20191024	Sunny	Moderate	Mid-Ebb	S	1	08:59	6.86	8.11	27.5	28.36	3.26	11	113	0.256	SE
S2A	20191024	Sunny	Moderate	Mid-Ebb	В	8.4	09:28	7.01	8.06	27.41	28.29	3.75	12	113	0.275	E
S2A	20191024	Sunny	Moderate	Mid-Ebb	В	8.4	09:28	6.63	7.88	27.48	28.32	4.19	11	113	0.175	SE
S2A	20191024	Sunny	Moderate	Mid-Ebb	М	4.7	09:29	7.05	7.97	27.52	28.32	3.52	10	113	0.277	SE
S2A	20191024	Sunny	Moderate	Mid-Ebb	М	4.7	09:29	6.66	8.1	27.53	28.24	3.45	9	114	0.154	E
S2A	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:30	6.38	8.12	27.46	28.31	3.42	9	113	0.143	SE
S2A	20191024	Sunny	Moderate	Mid-Ebb	S	1	09:30	6.84	8.08	27.4	28.27	3.61	9	113	0.225	SE
S3	20191024	Sunny	Moderate	Mid-Ebb	В	9	10:04	6.24	7.87	27.52	28.36	4.57	10	113	0.163	SE
S3	20191024	Sunny	Moderate	Mid-Ebb	В	9	10:04	6.5	8.14	27.35	28.44	4.52	10	114	0.21	SE
S3	20191024	Sunny	Moderate	Mid-Ebb	М	5	10:05	6.69	8.08	27.38	28.26	3.83	12	113	0.262	E
S3	20191024	Sunny	Moderate	Mid-Ebb	М	5	10:05	6.91	8.11	27.38	28.44	3.64	11	113	0.169	SE
S3	20191024	Sunny	Moderate	Mid-Ebb	S	1	10:06	6.23	8.09	27.34	28.26	3.67	11	113	0.164	SE
S3	20191024	Sunny	Moderate	Mid-Ebb	S	1	10:06	6.6	7.97	27.4	28.42	3.5	12	113	0.18	SE
B1	20191024	Sunny	Moderate	Mid-Flood	В	3.7	14:48	6.5	8	27.31	28.65	3.86	6	113	0.317	W
B1	20191024	Sunny	Moderate	Mid-Flood	В	3.7	14:48	6.77	7.98	27.7	28.67	4.02	8	113	0.168	W
B1	20191024	Sunny	Moderate	Mid-Flood	S	1	14:49	6.96	8.02	27.78	28.68	3.46	7	113	0.212	W
B1	20191024	Sunny	Moderate	Mid-Flood	S	1	14:49	6.59	7.99	27.53	28.67	3.13	7	113	0.249	NW
B2	20191024	Sunny	Moderate	Mid-Flood	В	3.4	15:10	6.62	8.05	27.47	28.69	3.61	9	113	0.201	NW
B2	20191024	Sunny	Moderate	Mid-Flood	В	3.4	15:10	6.69	8.04	27.74	28.63	4.02	10	113	0.259	NW
B2	20191024	Sunny	Moderate	Mid-Flood	S	1	15:11	7.02	7.86	27.25	28.43	3.45	12	112	0.153	W
B2	20191024	Sunny	Moderate	Mid-Flood	S	1	15:11	6.81	7.96	27.7	28.67	3.42	10	113	0.282	NW
В3	20191024	Sunny	Moderate	Mid-Flood	В	4.1	15:23	6.65	7.91	27.8	28.48	3.76	6	113	0.184	W
В3	20191024	Sunny	Moderate	Mid-Flood	В	4.1	15:23	7	7.79	27.62	28.41	3.77	7	113	0.178	W
В3	20191024	Sunny	Moderate	Mid-Flood	S	1	15:24	6.65	8.04	27.32	28.44	3.29	6	113	0.305	W
В3	20191024	Sunny	Moderate	Mid-Flood	S	1	15:24	6.5	7.95	27.35	28.64	3.47	7	113	0.274	W
B4	20191024	Sunny	Moderate	Mid-Flood	В	4.3	15:37	6.98	7.79	27.6	28.62	3.82	10	113	0.264	NW
B4	20191024	Sunny	Moderate	Mid-Flood	В	4.3	15:37	7.01	8.04	27.77	28.5	4.18	9	112	0.269	W
B4	20191024	Sunny	Moderate	Mid-Flood	S	1	15:38	6.86	7.97	27.44	28.61	3.42	6	113	0.14	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B4	20191024	Sunny	Moderate	Mid-Flood	S	1	15:38	6.55	8.06	27.6	28.5	3.56	8	112	0.145	W
C1A	20191024	Sunny	Moderate	Mid-Flood	В	10.9	14:27	7.06	7.75	27.45	28.49	3.76	10	113	0.286	W
C1A	20191024	Sunny	Moderate	Mid-Flood	В	10.9	14:27	7.09	7.81	27.72	28.69	3.87	11	112	0.234	W
C1A	20191024	Sunny	Moderate	Mid-Flood	М	5.95	14:28	7.01	7.94	27.53	28.49	3.74	8	113	0.203	W
C1A	20191024	Sunny	Moderate	Mid-Flood	М	5.95	14:28	7.03	7.87	27.57	28.5	3.66	9	114	0.311	W
C1A	20191024	Sunny	Moderate	Mid-Flood	S	1	14:29	6.99	7.96	27.79	28.7	3.16	8	112	0.171	W
C1A	20191024	Sunny	Moderate	Mid-Flood	S	1	14:29	6.69	7.83	27.22	28.61	3.46	7	112	0.147	W
C2A	20191024	Sunny	Moderate	Mid-Flood	В	11	14:22	7	7.96	27.65	28.6	4.05	7	114	0.162	NW
C2A	20191024	Sunny	Moderate	Mid-Flood	В	11	14:22	6.98	7.85	27.3	28.46	3.58	8	113	0.281	W
C2A	20191024	Sunny	Moderate	Mid-Flood	М	6	14:23	6.69	8.02	27.42	28.45	3.48	8	114	0.253	W
C2A	20191024	Sunny	Moderate	Mid-Flood	М	6	14:23	6.75	7.92	27.63	28.69	3.28	8	114	0.162	W
C2A	20191024	Sunny	Moderate	Mid-Flood	S	1	14:24	6.55	7.87	27.48	28.46	3.15	8	113	0.155	NW
C2A	20191024	Sunny	Moderate	Mid-Flood	S	1	14:24	6.55	7.89	27.8	28.54	3.36	9	113	0.143	W
CR1	20191024	Sunny	Moderate	Mid-Flood	В	11.8	14:38	6.98	7.99	27.71	28.57	3.99	15	112	0.299	W
CR1	20191024	Sunny	Moderate	Mid-Flood	В	11.8	14:38	6.56	8.07	27.44	28.48	3.64	15	113	0.307	W
CR1	20191024	Sunny	Moderate	Mid-Flood	М	6.4	14:39	6.77	7.94	27.59	28.52	3.2	13	113	0.296	W
CR1	20191024	Sunny	Moderate	Mid-Flood	М	6.4	14:39	6.86	7.97	27.31	28.45	3.34	12	113	0.293	W
CR1	20191024	Sunny	Moderate	Mid-Flood	S	1	14:40	6.77	7.93	27.73	28.5	2.99	8	113	0.139	W
CR1	20191024	Sunny	Moderate	Mid-Flood	S	1	14:40	6.97	7.75	27.51	28.59	3.4	9	113	0.318	W
CR2	20191024	Sunny	Moderate	Mid-Flood	В	10.6	15:55	6.53	8.09	27.79	28.45	4	15	112	0.224	W
CR2	20191024	Sunny	Moderate	Mid-Flood	В	10.6	15:55	7.04	7.75	27.51	28.43	4.03	16	113	0.284	W
CR2	20191024	Sunny	Moderate	Mid-Flood	М	5.8	15:56	6.64	7.87	27.27	28.55	3.46	14	113	0.279	W
CR2	20191024	Sunny	Moderate	Mid-Flood	М	5.8	15:56	6.5	8.01	27.75	28.41	3.8	13	113	0.271	NW
CR2	20191024	Sunny	Moderate	Mid-Flood	S	1	15:57	6.83	7.86	27.56	28.6	3.55	10	112	0.173	W
CR2	20191024	Sunny	Moderate	Mid-Flood	S	1	15:57	6.56	8.05	27.73	28.45	3.48	10	113	0.243	W
F1A	20191024	Sunny	Moderate	Mid-Flood	В	6.9	16:10	6.45	7.9	27.24	28.59	3.9	7	113	0.28	NW
F1A	20191024	Sunny	Moderate	Mid-Flood	В	6.9	16:10	7.11	7.94	27.56	28.55	4.11	8	113	0.212	W
F1A	20191024		Moderate	Mid-Flood	М	3.95	16:11	6.75	8.04	27.44	28.43	3.59	7	113	0.193	W
F1A	20191024	Sunny	Moderate	Mid-Flood	М	3.95	16:11	6.53	7.98	27.52	28.52	3.51	8	113	0.177	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
F1A	20191024	Sunny	Moderate	Mid-Flood	S	1	16:12	6.6	7.98	27.41	28.42	3.04	7	113	0.321	W
F1A	20191024	Sunny	Moderate	Mid-Flood	S	1	16:12	7.06	8.05	27.52	28.39	3.07	6	113	0.192	W
H1	20191024	Sunny	Moderate	Mid-Flood	В	7.1	15:04	6.7	8.02	27.62	28.43	3.97	8	114	0.216	W
H1	20191024	Sunny	Moderate	Mid-Flood	В	7.1	15:04	7.06	7.98	27.83	28.59	3.83	9	113	0.217	NW
H1	20191024	Sunny	Moderate	Mid-Flood	М	4.05	15:05	6.67	7.95	27.55	28.48	3.66	9	113	0.269	W
H1	20191024	Sunny	Moderate	Mid-Flood	М	4.05	15:05	6.78	7.81	27.52	28.44	3.68	8	113	0.157	W
H1	20191024	Sunny	Moderate	Mid-Flood	S	1	15:06	6.55	7.96	27.8	28.5	3.2	7	113	0.169	NW
H1	20191024	Sunny	Moderate	Mid-Flood	S	1	15:06	6.83	7.97	27.28	28.69	2.99	8	111	0.22	W
M1	20191024	Sunny	Moderate	Mid-Flood	В	7.4	16:44	7.01	7.92	27.52	28.33	3.9	18	113	0.241	NW
M1	20191024	Sunny	Moderate	Mid-Flood	В	7.4	16:44	6.71	7.9	27.83	28.33	3.57	17	114	0.231	W
M1	20191024	Sunny	Moderate	Mid-Flood	М	4.2	16:45	6.91	7.91	27.61	28.36	3.72	16	112	0.24	W
M1	20191024	Sunny	Moderate	Mid-Flood	М	4.2	16:45	7.04	7.95	27.7	28.31	3.53	17	113	0.272	W
M1	20191024	Sunny	Moderate	Mid-Flood	S	1	16:46	6.47	7.91	27.7	28.26	3.12	17	113	0.264	W
M1	20191024	Sunny	Moderate	Mid-Flood	S	1	16:46	6.78	7.95	27.45	28.42	3.51	18	113	0.158	W
S1	20191024	Sunny	Moderate	Mid-Flood	В	4.6	14:59	6.58	7.99	27.49	28.59	4.07	10	113	0.285	W
S1	20191024	Sunny	Moderate	Mid-Flood	В	4.6	14:59	7.05	7.84	27.82	28.68	3.59	10	113	0.234	W
S1	20191024	Sunny	Moderate	Mid-Flood	S	1	15:00	7.08	7.88	27.5	28.67	3.37	9	113	0.152	NW
S1	20191024	Sunny	Moderate	Mid-Flood	S	1	15:00	6.84	7.86	27.71	28.61	3.26	8	113	0.276	NW
S2A	20191024	Sunny	Moderate	Mid-Flood	В	8.6	15:31	6.54	8.08	27.51	28.6	4.07	15	112	0.171	W
S2A	20191024	Sunny	Moderate	Mid-Flood	В	8.6	15:31	6.96	7.8	27.62	28.4	3.66	16	112	0.256	W
S2A	20191024	Sunny	Moderate	Mid-Flood	М	4.8	15:32	7.02	7.92	27.56	28.45	3.42	13	113	0.286	W
S2A	20191024	Sunny	Moderate	Mid-Flood	М	4.8	15:32	6.85	7.84	27.8	28.42	3.24	13	113	0.295	W
S2A	20191024	Sunny	Moderate	Mid-Flood	S	1	15:33	6.5	7.97	27.83	28.55	3.04	12	114	0.173	W
S2A	20191024	Sunny	Moderate	Mid-Flood	S	1	15:33	6.49	7.97	27.44	28.61	3.58	12	113	0.301	W
S3	20191024	Sunny	Moderate	Mid-Flood	В	8	16:05	6.58	7.97	27.32	28.38	4.36	25	113	0.187	W
S3	20191024	Sunny	Moderate	Mid-Flood	В	8	16:05	6.77	7.92	27.52	28.31	3.99	24	112	0.259	W
S3	20191024	Sunny	Moderate	Mid-Flood	М	4.5	16:06	6.53	7.82	27.71	28.6	3.69	21	113	0.221	W
S3	20191024	Sunny	Moderate	Mid-Flood	М	4.5	16:06	6.94	7.95	27.57	28.6	3.5	22	113	0.252	NW
S3	20191024	Sunny	Moderate	Mid-Flood	S	1	16:07	6.61	8.02	27.57	28.54	3.7	23	113	0.276	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S3	20191024	Sunny	Moderate	Mid-Flood	S	1	16:07	6.48	7.77	27.85	28.6	3.36	22	113	0.168	W
B1	20191026	Cloudy	Moderate	Mid-Ebb	В	3.5	09:49	7.1	8.22	28.47	28.3	3.59	7	113	0.127	SE
B1	20191026	Cloudy	Moderate	Mid-Ebb	В	3.5	09:49	6.61	7.98	28.46	28.1	3.71	8	113	0.201	SE
B1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	09:50	6.52	8.08	28.64	28.19	3.48	6	114	0.203	SE
B1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	09:50	7.17	8.01	28.61	28.31	3.39	6	113	0.279	E
B2	20191026	Cloudy	Moderate	Mid-Ebb	В	4.7	10:10	7.21	7.89	28.35	28.1	3.81	8	113	0.187	SE
B2	20191026	Cloudy	Moderate	Mid-Ebb	В	4.7	10:10	6.72	8.18	28.67	28.19	3.63	8	113	0.265	SE
B2	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:11	7.09	8.1	28.59	28.28	3.28	6	112	0.28	SE
B2	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:11	6.91	8.05	28.62	28.16	3.2	7	113	0.195	SE
В3	20191026	Cloudy	Moderate	Mid-Ebb	В	3.9	10:49	6.92	7.98	28.35	28.29	4.03	8	113	0.263	SE
В3	20191026	Cloudy	Moderate	Mid-Ebb	В	3.9	10:49	7.36	7.88	28.59	28.41	3.85	8	114	0.126	SE
В3	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:50	6.81	8.15	28.54	28.26	3.55	8	113	0.212	SE
В3	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:50	7.09	8.02	28.37	28.44	3.39	9	113	0.215	E
B4	20191026	Cloudy	Moderate	Mid-Ebb	В	3.1	10:59	7.04	7.97	28.32	28.23	3.97	9	113	0.165	SE
B4	20191026	Cloudy	Moderate	Mid-Ebb	В	3.1	10:59	7.33	8.07	28.46	28.21	3.99	10	113	0.146	SE
B4	20191026	Cloudy	Moderate	Mid-Ebb	S	1	11:00	6.64	8.17	28.38	28.47	2.97	8	113	0.117	SE
B4	20191026	Cloudy	Moderate	Mid-Ebb	S	1	11:00	7	8.15	28.31	28.5	3.43	9	112	0.128	SE
C1A	20191026	Cloudy	Moderate	Mid-Ebb	В	9.1	09:22	7.28	7.89	28.34	28.21	4.02	8	113	0.259	E
C1A	20191026	Cloudy	Moderate	Mid-Ebb	В	9.1	09:22	7.06	8.1	28.43	28.26	3.69	8	113	0.141	E
C1A	20191026	Cloudy	Moderate	Mid-Ebb	М	5.05	09:23	7.03	8.23	28.67	28.2	3.21	8	113	0.196	SE
C1A	20191026	Cloudy	Moderate	Mid-Ebb	М	5.05	09:23	7.37	8.03	28.42	28.22	3.39	9	113	0.267	E
C1A	20191026	Cloudy	Moderate	Mid-Ebb	S	1	09:24	6.72	8.1	28.7	28.17	3.06	8	114	0.125	E
C1A	20191026	Cloudy	Moderate	Mid-Ebb	S	1	09:24	7.17	7.9	28.3	28.14	2.99	8	113	0.214	SE
C2A	20191026	Cloudy	Moderate	Mid-Ebb	В	11.5	09:30	7.06	7.94	28.43	28.19	3.48	11	113	0.161	
C2A	20191026	Cloudy	Moderate	Mid-Ebb	В	11.5	09:30	6.87	7.92	28.63	28.3	3.54	10	113	0.274	SE
C2A	20191026	Cloudy	Moderate	Mid-Ebb	М	6.25	09:31	7.33	8.05	28.56	28.13	3.42	9	113	0.193	SE
C2A	20191026	Cloudy	Moderate	Mid-Ebb	М	6.25	09:31	7.3	8.09	28.48	28.15	3.38	8	112	0.214	SE
C2A	20191026	Cloudy	Moderate	Mid-Ebb	S	1	09:32	6.72	7.99	28.49	28.27	3.42	8	113	0.213	E
C2A	20191026	Cloudy	Moderate	Mid-Ebb	S	1	09:32	6.65	8.23	28.58	28.24	3.3	9	113	0.122	E

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR1	20191026	Cloudy	Moderate	Mid-Ebb	В	11.5	09:46	6.69	7.98	28.46	28.31	3.84	12	113	0.122	SE
CR1	20191026	Cloudy	Moderate	Mid-Ebb	В	11.5	09:46	7.28	7.86	28.43	28.35	3.85	11	113	0.266	E
CR1	20191026	Cloudy	Moderate	Mid-Ebb	М	6.25	09:47	7.08	8.01	28.69	28.42	3.21	9	112	0.183	SE
CR1	20191026	Cloudy	Moderate	Mid-Ebb	М	6.25	09:47	7.33	7.96	28.67	28.27	3.4	9	113	0.126	SE
CR1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	09:48	7.1	7.93	28.34	28.2	3.35	9	112	0.128	SE
CR1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	09:48	7.12	8.11	28.51	28.25	3.22	8	113	0.254	SE
CR2	20191026	Cloudy	Moderate	Mid-Ebb	В	11.1	10:12	7.38	8.13	28.35	28.37	3.64	13	113	0.143	SE
CR2	20191026	Cloudy	Moderate	Mid-Ebb	В	11.1	10:12	7.32	8.12	28.55	28.13	3.6	12	113	0.132	E
CR2	20191026	Cloudy	Moderate	Mid-Ebb	М	6.05	10:13	7.23	8.21	28.34	28.2	3.17	12	114	0.28	SE
CR2	20191026	Cloudy	Moderate	Mid-Ebb	М	6.05	10:13	7.16	8.02	28.37	28.17	3.09	11	113	0.181	SE
CR2	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:14	6.81	8.08	28.3	28.4	3.01	11	113	0.278	SE
CR2	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:14	6.65	8.08	28.37	28.4	3.17	11	113	0.196	E
F1A	20191026	Cloudy	Moderate	Mid-Ebb	В	7.8	11:16	6.53	7.9	28.62	28.49	3.57	11	112	0.214	SE
F1A	20191026	Cloudy	Moderate	Mid-Ebb	В	7.8	11:16	7.01	7.91	28.69	28.37	3.67	12	112	0.169	SE
F1A	20191026	Cloudy	Moderate	Mid-Ebb	М	4.4	11:17	6.76	7.87	28.31	28.43	3.02	10	113	0.209	SE
F1A	20191026	Cloudy	Moderate	Mid-Ebb	М	4.4	11:17	6.79	8.22	28.37	28.54	3.08	11	113	0.275	E
F1A	20191026	Cloudy	Moderate	Mid-Ebb	S	1	11:18	7.19	7.87	28.62	28.55	3.1	9	113	0.279	SE
F1A	20191026	Cloudy	Moderate	Mid-Ebb	S	1	11:18	6.76	8.09	28.46	28.36	3.13	8	113	0.266	E
H1	20191026	Cloudy	Moderate	Mid-Ebb	В	7.3	10:29	6.76	7.87	28.62	28.38	3.54	9	113	0.256	SE
H1	20191026	Cloudy	Moderate	Mid-Ebb	В	7.3	10:29	7.3	7.98	28.4	28.5	3.97	10	113	0.223	SE
H1	20191026	Cloudy	Moderate	Mid-Ebb	М	4.15	10:30	7.34	8.18	28.32	28.49	3.51	10	113	0.26	SE
H1	20191026	Cloudy	Moderate	Mid-Ebb	М	4.15	10:30	6.93	8.23	28.54	28.39	3.3	9	113	0.129	SE
H1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:31	7.05	7.92	28.51	28.31	3.42	7	113	0.124	SE
H1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:31	6.84	8.13	28.5	28.53	3.13	8	113	0.139	E
M1	20191026	Cloudy	Moderate	Mid-Ebb	В	8.7	11:51	6.86	8	28.42	28.45	3.92	11	112	0.181	SE
M1	20191026	Cloudy	Moderate	Mid-Ebb	В	8.7	11:51	6.76	7.92	28.66	28.52	3.98	12	113	0.122	E
M1	20191026	Cloudy	Moderate	Mid-Ebb	М	4.85	11:52	6.96	8.14	28.44	28.31	3.18	12	112	0.185	SE
M1	20191026	Cloudy	Moderate	Mid-Ebb	М	4.85	11:52	6.71	8.22	28.35	28.39	3.21	11	112	0.143	
M1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	11:53	6.6	8.06	28.32	28.41	3.01	11	113	0.116	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
M1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	11:53	7.12	7.86	28.39	28.38	3.04	11	113	0.12	SE
S1	20191026	Cloudy	Moderate	Mid-Ebb	В	4.3	09:59	7.17	8.23	28.51	28.44	3.59	9	114	0.172	SE
S1	20191026	Cloudy	Moderate	Mid-Ebb	В	4.3	09:59	7.38	7.93	28.39	28.4	3.78	8	113	0.244	SE
S1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:00	6.72	8.07	28.66	28.36	3.25	8	113	0.275	E
S1	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:00	7.02	8.19	28.36	28.37	3.01	9	113	0.128	E
S2A	20191026	Cloudy	Moderate	Mid-Ebb	В	7.8	10:30	6.92	8.05	28.57	28.41	4.01	12	113	0.262	E
S2A	20191026	Cloudy	Moderate	Mid-Ebb	В	7.8	10:30	6.81	7.87	28.49	28.46	3.6	12	112	0.162	SE
S2A	20191026	Cloudy	Moderate	Mid-Ebb	М	4.4	10:31	6.75	8.05	28.37	28.28	3.15	9	113	0.257	SE
S2A	20191026	Cloudy	Moderate	Mid-Ebb	М	4.4	10:31	6.82	7.93	28.37	28.31	3.4	8	113	0.253	E
S2A	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:32	7.18	8.18	28.32	28.45	3.3	8	113	0.202	SE
S2A	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:32	7.19	7.98	28.41	28.33	3	9	113	0.188	E
S3	20191026	Cloudy	Moderate	Mid-Ebb	В	10	10:01	6.92	8.01	28.35	28.1	4.32	12	113	0.163	SE
S3	20191026	Cloudy	Moderate	Mid-Ebb	В	10	10:01	7.15	7.96	28.55	28.36	4.07	13	113	0.15	SE
S3	20191026	Cloudy	Moderate	Mid-Ebb	М	5.5	10:02	7.38	8.11	28.59	28.2	3.23	12	112	0.134	SE
S3	20191026	Cloudy	Moderate	Mid-Ebb	М	5.5	10:02	6.89	8.18	28.61	28.26	3.59	12	113	0.117	SE
S3	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:03	7.22	7.93	28.38	28.12	3.52	11	113	0.133	SE
S3	20191026	Cloudy	Moderate	Mid-Ebb	S	1	10:03	6.82	7.97	28.4	28.27	3.49	13	113	0.25	SE
B1	20191026	Cloudy	Moderate	Mid-Flood	В	4.2	15:50	6.48	8.21	28.4	28.6	3.68	9	113	0.254	W
B1	20191026	Cloudy	Moderate	Mid-Flood	В	4.2	15:50	7.04	7.96	28.42	28.42	3.9	9	113	0.184	W
B1	20191026	Cloudy	Moderate	Mid-Flood	S	1	15:51	7.24	8.26	28.42	28.61	3.33	9	114	0.253	W
B1	20191026	Cloudy	Moderate	Mid-Flood	S	1	15:51	7.13	8.26	28.36	28.45	3.41	10	112	0.27	W
B2	20191026	Cloudy	Moderate	Mid-Flood	В	3.7	16:11	6.65	8.19	28.29	28.53	3.92	13	112	0.22	W
B2	20191026	Cloudy	Moderate	Mid-Flood	В	3.7	16:11	6.49	8.25	28.35	28.55	3.95	12	112	0.21	W
B2	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:12	6.75	8.29	28.35	28.51	2.95	9	113	0.306	W
B2	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:12	6.72	8.15	28.45	28.27	2.91	10	113	0.297	W
В3	20191026	Cloudy	Moderate	Mid-Flood	В	4.2	16:50	6.96	8.26	28.58	28.28	3.77	8	113	0.22	W
В3	20191026	Cloudy	Moderate	Mid-Flood	В	4.2	16:50	6.47	8.2	28.6	28.29	3.69	9	113	0.296	W
В3	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:51	6.48	8.13	28.57	28.16	3.35	9	112	0.197	W
В3	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:51	6.66	8.08	28.48	28.27	3.24	8	113	0.212	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B4	20191026	Cloudy	Moderate	Mid-Flood	В	4.2	17:00	6.78	8.01	28.6	28.25	3.61	11	113	0.23	W
B4	20191026	Cloudy	Moderate	Mid-Flood	В	4.2	17:00	7.34	7.95	28.36	28.35	3.79	12	113	0.209	W
B4	20191026	Cloudy	Moderate	Mid-Flood	S	1	17:01	6.74	8.26	28.61	28.26	3.36	7	113	0.218	NW
B4	20191026	Cloudy	Moderate	Mid-Flood	S	1	17:01	7.06	8.03	28.32	28.41	3.29	8	114	0.165	W
C1A	20191026	Cloudy	Moderate	Mid-Flood	В	10.2	15:25	6.95	7.96	28.54	28.4	3.43	9	113	0.157	W
C1A	20191026	Cloudy	Moderate	Mid-Flood	В	10.2	15:25	6.93	8.24	28.63	28.71	3.65	8	113	0.153	W
C1A	20191026	Cloudy	Moderate	Mid-Flood	М	5.6	15:26	6.54	8.28	28.65	28.6	3.05	9	112	0.245	W
C1A	20191026	Cloudy	Moderate	Mid-Flood	М	5.6	15:26	6.78	8.28	28.41	28.7	3.19	9	114	0.244	W
C1A	20191026	Cloudy	Moderate	Mid-Flood	S	1	15:27	6.67	8.29	28.27	28.51	3.37	9	113	0.232	NW
C1A	20191026	Cloudy	Moderate	Mid-Flood	S	1	15:27	7.04	7.97	28.5	28.69	2.93	10	114	0.265	W
C2A	20191026	Cloudy	Moderate	Mid-Flood	В	10.1	15:26	6.96	7.99	28.38	28.74	3.52	9	114	0.296	W
C2A	20191026	Cloudy	Moderate	Mid-Flood	В	10.1	15:26	6.51	8.26	28.64	28.4	3.79	10	113	0.154	W
C2A	20191026	Cloudy	Moderate	Mid-Flood	М	5.55	15:27	7.12	8.11	28.45	28.72	3.22	9	114	0.285	W
C2A	20191026	Cloudy	Moderate	Mid-Flood	М	5.55	15:27	7.39	8.19	28.45	28.44	3.21	9	114	0.294	W
C2A	20191026	Cloudy	Moderate	Mid-Flood	S	1	15:28	6.94	8.11	28.51	28.72	3.44	8	114	0.19	W
C2A	20191026	Cloudy	Moderate	Mid-Flood	S	1	15:28	6.82	8	28.37	28.47	2.85	8	113	0.21	W
CR1	20191026	Cloudy	Moderate	Mid-Flood	В	11	15:42	7.26	8.06	28.57	28.59	3.86	7	114	0.292	W
CR1	20191026	Cloudy	Moderate	Mid-Flood	В	11	15:42	7.1	8.25	28.27	28.46	3.45	7	113	0.236	W
CR1	20191026	Cloudy	Moderate	Mid-Flood	М	6	15:43	6.48	8.13	28.47	28.43	3.06	8	112	0.15	W
CR1	20191026	Cloudy	Moderate	Mid-Flood	М	6	15:43	6.83	8.07	28.63	28.47	3.34	7	113	0.241	W
CR1	20191026	Cloudy	Moderate	Mid-Flood	S	1	15:44	7.35	8.06	28.38	28.43	3.15	7	113	0.145	W
CR1	20191026	Cloudy	Moderate	Mid-Flood	S	1	15:44	7.29	8.1	28.58	28.52	3.23	7	113	0.187	W
CR2	20191026	Cloudy	Moderate	Mid-Flood	В	10.5	16:10	6.58	8.18	28.58	28.42	4.1	7	114	0.192	W
CR2	20191026	Cloudy	Moderate	Mid-Flood	В	10.5	16:10	7.02	8.19	28.31	28.28	3.57	8	113	0.287	W
CR2	20191026	Cloudy	Moderate	Mid-Flood	М	5.75	16:11	6.72	8.1	28.41	28.46	3.28	6	113	0.261	NW
CR2	20191026	Cloudy	Moderate	Mid-Flood	М	5.75	16:11	6.69	8.2	28.49	28.56	3.46	7	113	0.237	W
CR2	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:12	7.37	8.28	28.64	28.32	3.25	6	113	0.146	W
CR2	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:12	6.74	7.99	28.44	28.57	3.05	7	112	0.312	W
F1A	20191026	Cloudy	Moderate	Mid-Flood	В	7.7	17:16	7.38	8.13	28.52	28.39	3.75	8	114	0.228	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
F1A	20191026	Cloudy	Moderate	Mid-Flood	В	7.7	17:16	6.74	8.06	28.66	28.35	3.54	9	113	0.254	W
F1A	20191026	Cloudy	Moderate	Mid-Flood	М	4.35	17:17	6.7	7.99	28.53	28.16	3.27	8	113	0.162	W
F1A	20191026	Cloudy	Moderate	Mid-Flood	М	4.35	17:17	7.11	8.16	28.37	28.32	3.41	9	113	0.239	NW
F1A	20191026	Cloudy	Moderate	Mid-Flood	S	1	17:18	6.71	8.2	28.48	28.33	2.96	9	112	0.146	W
F1A	20191026	Cloudy	Moderate	Mid-Flood	S	1	17:18	7.17	8.19	28.51	28.17	3.33	9	114	0.175	NW
H1	20191026	Cloudy	Moderate	Mid-Flood	В	6.9	16:31	7.39	8.06	28.33	28.34	3.71	10	113	0.222	NW
H1	20191026	Cloudy	Moderate	Mid-Flood	В	6.9	16:31	7.12	8.03	28.48	28.35	3.51	10	112	0.212	NW
H1	20191026	Cloudy	Moderate	Mid-Flood	М	3.95	16:32	6.6	8.16	28.53	28.46	3.17	10	113	0.151	W
H1	20191026	Cloudy	Moderate	Mid-Flood	М	3.95	16:32	6.64	7.95	28.28	28.48	3.29	9	114	0.308	W
H1	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:33	6.92	8.07	28.31	28.32	3.29	8	113	0.31	NW
H1	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:33	7.31	7.97	28.65	28.36	2.9	8	113	0.165	NW
M1	20191026	Cloudy	Moderate	Mid-Flood	В	7.7	17:54	7.37	7.96	28.46	28.19	3.67	9	113	0.314	W
M1	20191026	Cloudy	Moderate	Mid-Flood	В	7.7	17:54	6.8	8.1	28.63	28.16	3.38	9	113	0.182	W
M1	20191026	Cloudy	Moderate	Mid-Flood	М	4.35	17:55	7.26	8.22	28.62	28.27	3.58	6	114	0.317	W
M1	20191026	Cloudy	Moderate	Mid-Flood	М	4.35	17:55	6.67	7.98	28.66	28.15	3.27	7	113	0.21	W
M1	20191026	Cloudy	Moderate	Mid-Flood	S	1	17:56	6.99	8.11	28.52	28.32	3.41	8	113	0.298	W
M1	20191026	Cloudy	Moderate	Mid-Flood	S	1	17:56	6.86	8.26	28.56	28.38	3.35	7	113	0.18	NW
S1	20191026	Cloudy	Moderate	Mid-Flood	В	4.3	16:00	6.7	8.02	28.42	28.42	3.71	7	114	0.266	W
S1	20191026	Cloudy	Moderate	Mid-Flood	В	4.3	16:00	7.14	8.25	28.52	28.39	3.56	6	113	0.299	W
S1	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:01	6.67	7.99	28.66	28.58	3.13	8	114	0.317	NW
S1	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:01	6.77	8.05	28.65	28.57	3.06	8	113	0.216	W
S2A	20191026	Cloudy	Moderate	Mid-Flood	В	8.8	16:31	7.17	8.29	28.65	28.47	3.73	8	114	0.267	W
S2A	20191026	Cloudy	Moderate	Mid-Flood	В	8.8	16:31	7.24	8.07	28.36	28.23	3.73	9	113	0.313	W
S2A	20191026	Cloudy	Moderate	Mid-Flood	М	4.9	16:32	6.45	7.96	28.45	28.35	3.45	8	114	0.269	W
S2A	20191026	Cloudy	Moderate	Mid-Flood	М	4.9	16:32	6.72	8.23	28.65	28.42	3.06	7	113	0.307	W
S2A	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:33	7.35	8.28	28.58	28.42	3.39	8	112	0.223	W
S2A	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:33	7.01	7.95	28.67	28.45	3.27	8	114	0.274	W
S3	20191026	Cloudy	Moderate	Mid-Flood	В	8.6	15:58	7.2	8.23	28.44	28.44	4.15	7	113	0.18	NW
S3	20191026	Cloudy	Moderate	Mid-Flood	В	8.6	15:58	6.58	8.05	28.4	28.56	4.25	8	114	0.295	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S3	20191026	Cloudy	Moderate	Mid-Flood	М	4.8	15:59	6.46	8.25	28.46	28.34	3.39	9	113	0.182	W
S3	20191026	Cloudy	Moderate	Mid-Flood	М	4.8	15:59	7.13	8.11	28.27	28.47	3.65	8	112	0.209	NW
S3	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:00	6.52	8.12	28.4	28.28	3.25	7	113	0.237	NW
S3	20191026	Cloudy	Moderate	Mid-Flood	S	1	16:00	6.5	7.98	28.63	28.33	3.51	8	113	0.231	NW
B1	20191028	Cloudy	Modeerate	Mid-Ebb	В	4	11:20	7.07	7.92	29.58	28.9	3.7	4	110	0.177	E
B1	20191028	Cloudy	Modeerate	Mid-Ebb	В	4	11:20	6.78	8.23	29.31	29.08	3.71	5	110	0.177	SE
B1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:21	6.71	8	29.59	28.9	3.01	4	111	0.162	E
B1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:21	6.98	7.96	29.17	29.19	3.04	4	111	0.14	SE
B2	20191028	Cloudy	Modeerate	Mid-Ebb	В	4.6	11:41	7.09	8.14	29.37	29.12	3.73	4	110	0.169	E
B2	20191028	Cloudy	Modeerate	Mid-Ebb	В	4.6	11:41	6.73	7.9	29.62	29.14	3.45	4	110	0.194	SE
B2	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:42	6.97	8.16	29.25	29.05	2.83	3	111	0.19	SE
B2	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:42	6.91	7.97	29.24	28.95	3.22	3	110	0.197	SE
В3	20191028	Cloudy	Modeerate	Mid-Ebb	В	4.3	12:15	6.81	7.94	29.67	29.17	3.73	3	111	0.188	SE
В3	20191028	Cloudy	Modeerate	Mid-Ebb	В	4.3	12:15	6.94	8.12	29.59	29.04	3.72	4	111	0.173	SE
В3	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:16	7.05	7.96	29.18	29.26	2.8	3	111	0.17	E
В3	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:16	7.05	7.9	29.53	29	3.33	3	110	0.186	SE
B4	20191028	Cloudy	Modeerate	Mid-Ebb	В	3.3	12:26	6.84	8.12	29.12	28.89	3.73	3	111	0.187	SE
B4	20191028	Cloudy	Modeerate	Mid-Ebb	В	3.3	12:26	6.81	8.2	29.64	28.94	3.52	4	111	0.201	E
B4	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:27	6.95	8.24	29.15	29.12	2.78	2	111	0.198	SE
B4	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:27	6.91	8.06	29.67	28.87	2.83	2	111	0.187	SE
C1A	20191028	Cloudy	Modeerate	Mid-Ebb	В	9.3	10:56	7.1	7.94	29.32	29.05	3.72	3	110	0.191	SE
C1A	20191028	Cloudy	Modeerate	Mid-Ebb	В	9.3	10:56	6.91	8.03	29.52	29.07	3.52	4	111	0.139	SE
C1A	20191028	Cloudy	Modeerate	Mid-Ebb	М	5.15	10:57	6.96	8.03	29.66	28.87	3.01	3	111	0.176	SE
C1A	20191028	Cloudy	Modeerate	Mid-Ebb	М	5.15	10:57	6.79	7.93	29.16	29.1	3.07	3	110	0.194	SE
C1A	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	10:58	6.79	8.21	29.68	29.15	2.89	3	110	0.161	SE
C1A	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	10:58	6.96	8.21	29.56	28.87	2.84	4	110	0.157	SE
C2A	20191028	Cloudy	Modeerate	Mid-Ebb	В	10.9	11:08	7.18	8.14	29.58	29.09	3.72	4	109	0.188	SE
C2A	20191028	Cloudy	Modeerate	Mid-Ebb	В	10.9	11:08	7.13	8.04	29.56	29.02	3.32	4	110	0.177	SE
C2A	20191028	Cloudy	Modeerate	Mid-Ebb	М	5.95	11:09	7.03	8.23	29.46	29.07	2.87	4	111	0.188	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C2A	20191028	Cloudy	Modeerate	Mid-Ebb	М	5.95	11:09	7.07	8.19	29.53	29.01	3.24	4	112	0.139	SE
C2A	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:10	6.94	7.96	29.7	29.07	2.99	3	111	0.166	SE
C2A	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:10	6.97	8.11	29.35	29	2.8	3	111	0.199	SE
CR1	20191028	Cloudy	Modeerate	Mid-Ebb	В	12.1	11:26	7.04	8.24	29.2	29.1	3.58	2	111	0.198	SE
CR1	20191028	Cloudy	Modeerate	Mid-Ebb	В	12.1	11:26	6.91	8.06	29.58	29.16	3.51	2	110	0.191	E
CR1	20191028	Cloudy	Modeerate	Mid-Ebb	М	6.55	11:27	7.01	7.92	29.7	28.98	3.19	2	111	0.156	SE
CR1	20191028	Cloudy	Modeerate	Mid-Ebb	М	6.55	11:27	6.87	8.01	29.54	28.87	2.93	3	111	0.163	SE
CR1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:28	6.77	8.12	29.21	28.94	2.91	3	111	0.198	SE
CR1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:28	7.03	8	29.6	28.94	2.99	2	110	0.147	SE
CR2	20191028	Cloudy	Modeerate	Mid-Ebb	В	11.1	12:28	7.03	8.1	29.13	29.03	3.78	3	111	0.148	E
CR2	20191028	Cloudy	Modeerate	Mid-Ebb	В	11.1	12:28	6.84	7.97	29.11	28.96	3.39	2	110	0.151	SE
CR2	20191028	Cloudy	Modeerate	Mid-Ebb	М	6.05	12:29	7.02	8.09	29.12	28.87	3.09	2	110	0.209	SE
CR2	20191028	Cloudy	Modeerate	Mid-Ebb	М	6.05	12:29	6.68	8.09	29.52	29.08	3.37	2	111	0.189	E
CR2	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:30	6.83	8.23	29.6	28.97	3.31	<2	111	0.182	E
CR2	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:30	7.13	8.07	29.1	28.96	3.01	<2	110	0.167	SE
F1A	20191028	Cloudy	Modeerate	Mid-Ebb	В	8	12:55	6.85	7.92	29.64	28.8	3.36	5	111	0.166	SE
F1A	20191028	Cloudy	Modeerate	Mid-Ebb	В	8	12:55	7.09	7.93	29.27	29.09	3.79	6	109	0.176	SE
F1A	20191028	Cloudy	Modeerate	Mid-Ebb	М	4.5	12:56	6.94	8.14	29.61	29.04	2.98	5	111	0.205	SE
F1A	20191028	Cloudy	Modeerate	Mid-Ebb	М	4.5	12:56	6.97	8.14	29.68	29.14	3.17	6	111	0.204	E
F1A	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:57	7.19	8.09	29.4	28.83	2.93	4	111	0.136	SE
F1A	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:57	6.7	8.09	29.22	29.19	3.07	5	111	0.15	SE
H1	20191028	Cloudy	Modeerate	Mid-Ebb	В	7	11:55	6.9	8	29.65	29.01	3.6	2	111	0.178	E
H1	20191028	Cloudy	Modeerate	Mid-Ebb	В	7	11:55	7.16	8.17	29.59	28.93	3.78	2	110	0.205	E
H1	20191028	Cloudy	Modeerate	Mid-Ebb	М	4	11:56	6.82	7.96	29.43	28.85	3.07	3	111	0.161	SE
H1	20191028	Cloudy	Modeerate	Mid-Ebb	М	4	11:56	7.03	7.97	29.16	28.86	3.14	4	111	0.196	SE
H1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:57	7.06	7.9	29.7	28.92	3.16	3	111	0.166	
H1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:57	6.68	8.19	29.14	28.98	2.81	4	111	0.146	SE
M1	20191028	Cloudy	Modeerate	Mid-Ebb	В	8.1	13:29	6.84	7.92	29.62	28.85	3.85	3	111	0.139	SE
M1	20191028	Cloudy	Modeerate	Mid-Ebb	В	8.1	13:29	6.74	8.06	29.55	29.08	3.56	2	112	0.15	E

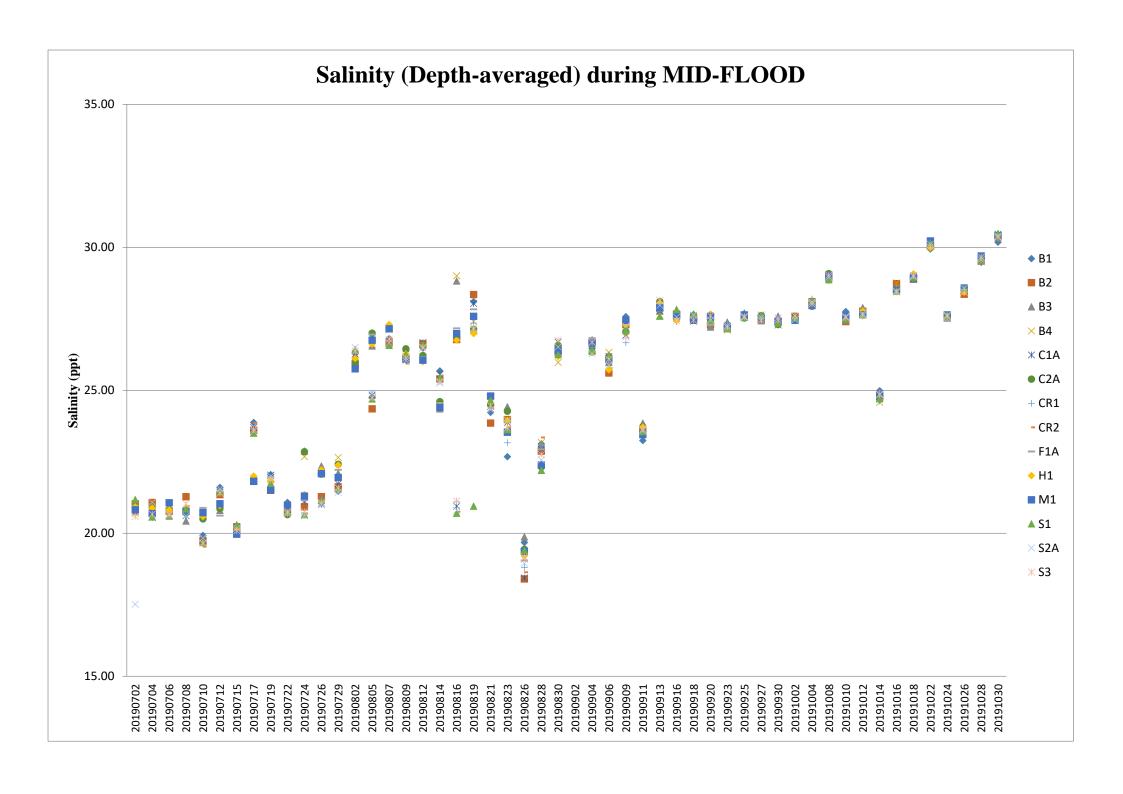
Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
M1	20191028	Cloudy	Modeerate	Mid-Ebb	М	4.55	13:30	6.71	8.23	29.5	28.84	2.75	2	112	0.162	SE
M1	20191028	Cloudy	Modeerate	Mid-Ebb	М	4.55	13:30	6.96	7.97	29.55	28.91	2.74	3	112	0.206	E
M1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	13:31	6.91	8.18	29.15	28.81	3.2	2	112	0.14	E
M1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	13:31	6.85	8.19	29.48	28.74	3.04	2	111	0.21	SE
S1	20191028	Cloudy	Modeerate	Mid-Ebb	В	4	11:30	7.05	7.99	29.22	28.81	3.28	4	110	0.185	SE
S1	20191028	Cloudy	Modeerate	Mid-Ebb	В	4	11:30	6.83	8.09	29.34	28.82	3.33	5	110	0.165	SE
S1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:31	6.96	8	29.69	29.05	3.12	4	109	0.148	SE
S1	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	11:31	7.06	8.21	29.45	28.88	2.9	4	110	0.189	SE
S2A	20191028	Cloudy	Modeerate	Mid-Ebb	В	8	12:01	6.85	7.97	29.24	29.17	3.53	2	111	0.171	SE
S2A	20191028	Cloudy	Modeerate	Mid-Ebb	В	8	12:01	7.19	8.12	29.38	29.01	3.75	4	111	0.149	SE
S2A	20191028	Cloudy	Modeerate	Mid-Ebb	М	4.5	12:02	7.15	7.99	29.45	28.87	3.14	4	111	0.163	E
S2A	20191028	Cloudy	Modeerate	Mid-Ebb	М	4.5	12:02	6.71	8.05	29.13	28.91	3.16	3	110	0.183	SE
S2A	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:03	7.1	8.12	29.23	28.82	2.78	3	111	0.199	E
S2A	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:03	6.69	7.97	29.55	28.8	3.02	3	111	0.195	SE
S3	20191028	Cloudy	Modeerate	Mid-Ebb	В	9.5	12:38	6.85	7.95	29.12	29.17	3.8	2	110	0.203	E
S3	20191028	Cloudy	Modeerate	Mid-Ebb	В	9.5	12:38	6.7	8.03	29.3	28.92	3.49	3	111	0.142	SE
S3	20191028	Cloudy	Modeerate	Mid-Ebb	М	5.25	12:39	6.91	8.22	29.34	29.11	3.39	2	111	0.188	SE
S3	20191028	Cloudy	Modeerate	Mid-Ebb	М	5.25	12:39	7.03	7.91	29.52	29	3.08	2	111	0.204	SE
S3	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:40	6.77	8.23	29.26	28.92	3.4	3	110	0.167	SE
S3	20191028	Cloudy	Modeerate	Mid-Ebb	S	1	12:40	6.84	8.18	29.35	28.86	2.92	2	112	0.19	SE
B1	20191028	Cloudy	Modeerate	Mid-Flood	В	4.2	16:19	7.23	8.1	29.55	28.29	3.51	2	111	0.218	W
B1	20191028	Cloudy	Modeerate	Mid-Flood	В	4.2	16:19	6.89	8.04	29.42	28.29	3.55	2	111	0.19	W
B1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:20	6.86	8.06	29.44	28.33	2.86	2	112	0.213	NW
B1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:20	7.05	8.18	29.5	28.08	3.28	2	110	0.293	W
B2	20191028	Cloudy	Modeerate	Mid-Flood	В	3.7	16:39	7.01	8.08	29.34	28.28	3.87	4	112	0.236	NW
B2	20191028	Cloudy	Modeerate	Mid-Flood	В	3.7	16:39	6.92	8.15	29.8	28.14	3.45	3	110	0.295	W
B2	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:40	6.91	8.14	29.56	28.22	3.28	3	111	0.204	W
B2	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:40	7.12	8.04	29.46	28.19	2.85	4	112	0.265	W
В3	20191028	Cloudy	Modeerate	Mid-Flood	В	4	16:30	7.09	8.1	29.4	28.36	3.96	5	111	0.272	W

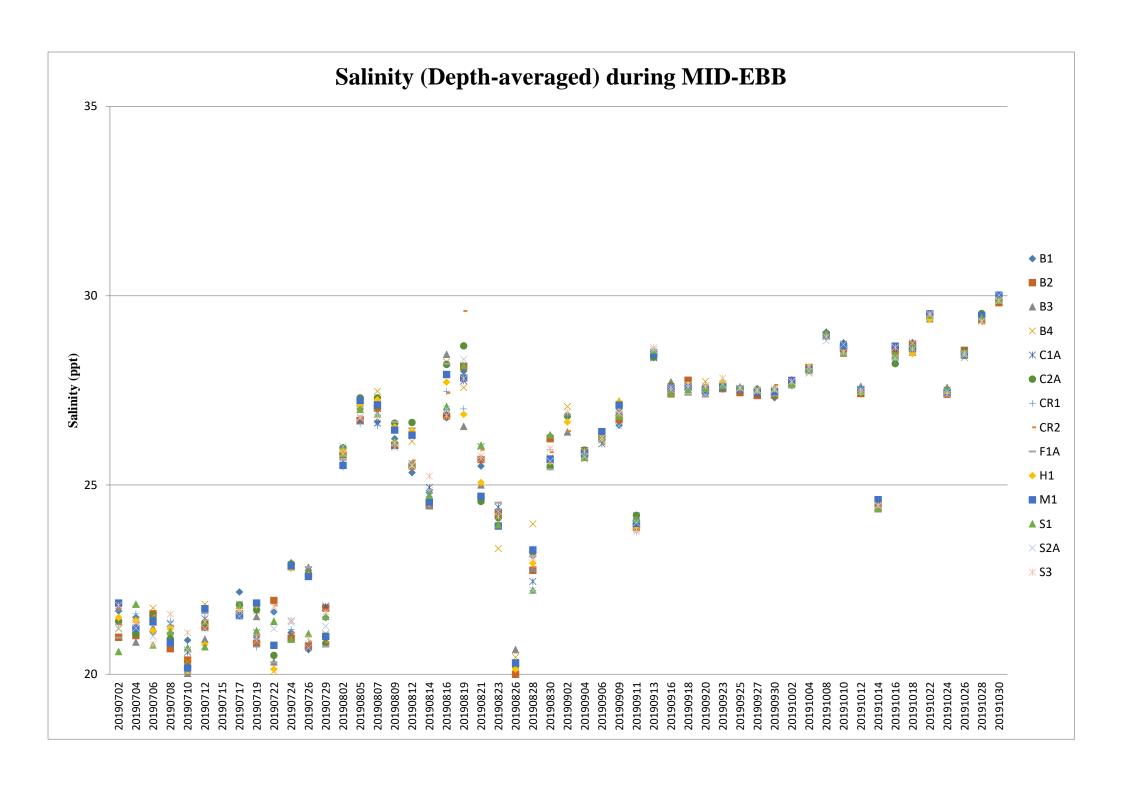
Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
В3	20191028	Cloudy	Modeerate	Mid-Flood	В	4	16:30	7.14	8.2	29.58	28.21	3.95	4	110	0.257	W
В3	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:31	7.25	7.87	29.71	28.14	3.47	4	111	0.222	NW
В3	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:31	7.1	7.99	29.38	28.17	3.31	5	111	0.285	W
B4	20191028	Cloudy	Modeerate	Mid-Flood	В	3.8	16:41	7.01	8.17	29.53	28.33	3.94	3	111	0.302	W
B4	20191028	Cloudy	Modeerate	Mid-Flood	В	3.8	16:41	6.91	7.85	29.4	28.3	3.56	2	111	0.289	NW
B4	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:42	7.08	7.88	29.73	28.27	3.45	3	111	0.26	W
B4	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:42	7.07	8.05	29.33	28.15	3.46	4	111	0.192	W
C1A	20191028	Cloudy	Modeerate	Mid-Flood	В	9.4	15:54	7.02	8.14	29.46	28.29	3.54	2	111	0.273	W
C1A	20191028	Cloudy	Modeerate	Mid-Flood	В	9.4	15:54	6.93	8.17	29.79	28.26	3.73	3	112	0.196	NW
C1A	20191028	Cloudy	Modeerate	Mid-Flood	М	5.2	15:55	7.1	7.93	29.38	28.33	3.45	3	111	0.259	W
C1A	20191028	Cloudy	Modeerate	Mid-Flood	М	5.2	15:55	7.11	7.97	29.65	28.09	3.35	2	111	0.302	W
C1A	20191028	Cloudy	Modeerate	Mid-Flood	S	1	15:56	7.12	8.12	29.43	28.25	2.92	2	112	0.23	W
C1A	20191028	Cloudy	Modeerate	Mid-Flood	S	1	15:56	7	8.18	29.65	28.28	3.19	3	111	0.268	W
C2A	20191028	Cloudy	Modeerate	Mid-Flood	В	10.2	15:26	7.09	8.09	29.39	28.47	3.73	3	111	0.24	W
C2A	20191028	Cloudy	Modeerate	Mid-Flood	В	10.2	15:26	7.14	8.21	29.8	28.41	3.9	3	110	0.194	NW
C2A	20191028	Cloudy	Modeerate	Mid-Flood	М	5.6	15:27	7.02	8.1	29.35	28.32	3.53	3	110	0.233	W
C2A	20191028	Cloudy	Modeerate	Mid-Flood	М	5.6	15:27	7.14	8.08	29.81	28.52	3.33	4	111	0.224	W
C2A	20191028	Cloudy	Modeerate	Mid-Flood	S	1	15:28	7.11	8.13	29.32	28.45	3.42	3	111	0.243	NW
C2A	20191028	Cloudy	Modeerate	Mid-Flood	S	1	15:28	6.96	7.87	29.8	28.33	3.1	4	111	0.308	W
CR1	20191028	Cloudy	Modeerate	Mid-Flood	В	11.1	15:44	7.11	8.03	29.4	28.36	3.47	3	111	0.246	W
CR1	20191028	Cloudy	Modeerate	Mid-Flood	В	11.1	15:44	7.11	8.1	29.82	28.18	3.67	4	111	0.206	W
CR1	20191028	Cloudy	Modeerate	Mid-Flood	М	6.05	15:45	6.85	7.92	29.58	28.48	3.58	3	110	0.31	W
CR1	20191028	Cloudy	Modeerate	Mid-Flood	М	6.05	15:45	7.01	8.11	29.64	28.45	3.43	4	111	0.246	W
CR1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	15:46	7.06	7.96	29.52	28.33	3.31	2	111	0.307	W
CR1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	15:46	6.87	8.11	29.34	28.49	3.12	3	111	0.194	W
CR2	20191028	Cloudy	Modeerate	Mid-Flood	В	10.3	17:27	7.08	8.07	29.36	28.06	3.5	5	111	0.217	W
CR2	20191028	Cloudy	Modeerate	Mid-Flood	В	10.3	17:27	6.85	8.08	29.61	28.19	3.46	4	111	0.276	W
CR2	20191028	Cloudy	Modeerate	Mid-Flood	М	5.65	17:28	7.14	8.21	29.46	28.15	3.48	3	111	0.268	NW
CR2	20191028	Cloudy	Modeerate	Mid-Flood	М	5.65	17:28	6.88	7.97	29.74	28.26	3.46	2	110	0.268	W

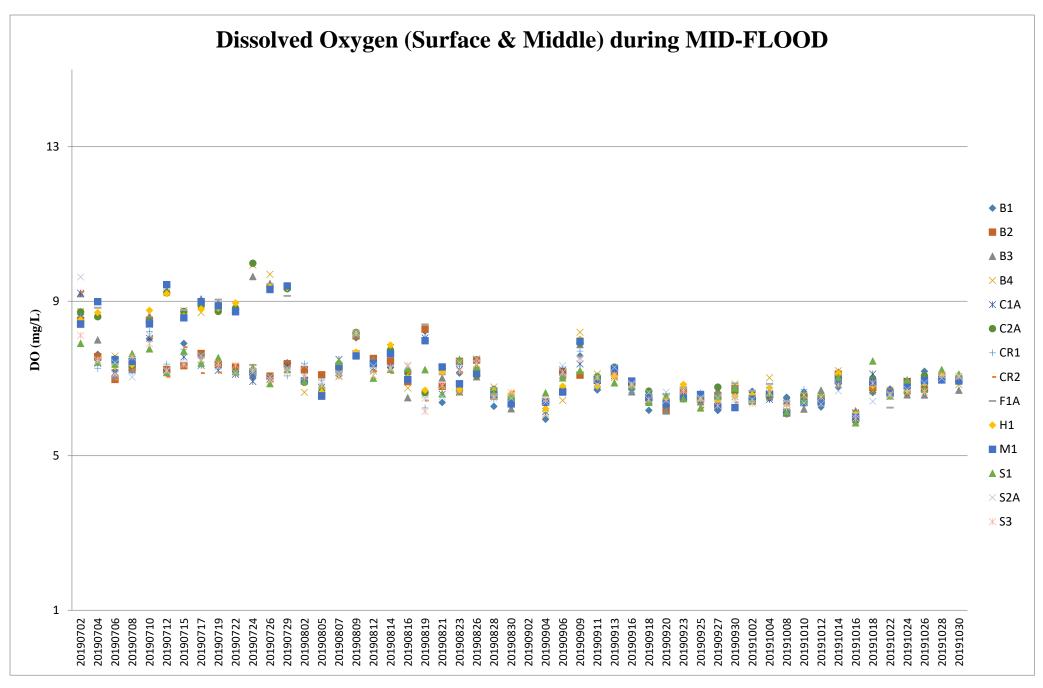
Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
CR2	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:29	7.24	8.13	29.46	28.11	3.02	2	110	0.273	W
CR2	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:29	7.25	7.99	29.83	28.24	3.49	2	111	0.219	W
F1A	20191028	Cloudy	Modeerate	Mid-Flood	В	7.3	17:12	6.89	8.02	29.71	28.37	3.8	3	111	0.208	W
F1A	20191028	Cloudy	Modeerate	Mid-Flood	В	7.3	17:12	7.02	8.06	29.59	28.2	3.61	4	112	0.305	NW
F1A	20191028	Cloudy	Modeerate	Mid-Flood	М	4.15	17:13	7.12	8.16	29.32	28.11	3.57	3	111	0.288	NW
F1A	20191028	Cloudy	Modeerate	Mid-Flood	М	4.15	17:13	6.99	8.13	29.35	28.32	3.5	4	111	0.313	W
F1A	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:14	6.91	8.13	29.66	28.05	3.23	3	110	0.206	W
F1A	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:14	7.05	7.94	29.68	28.12	2.85	3	110	0.306	W
H1	20191028	Cloudy	Modeerate	Mid-Flood	В	7.1	16:09	7.06	7.91	29.53	28.06	3.6	3	111	0.201	W
H1	20191028	Cloudy	Modeerate	Mid-Flood	В	7.1	16:09	7.27	7.93	29.85	28.1	3.76	4	111	0.223	W
H1	20191028	Cloudy	Modeerate	Mid-Flood	М	4.05	16:10	7.25	8.11	29.36	28.36	3.57	2	112	0.267	W
H1	20191028	Cloudy	Modeerate	Mid-Flood	М	4.05	16:10	7.07	7.94	29.47	28.27	3.53	2	111	0.303	W
H1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:11	6.94	8.01	29.71	28.38	2.94	2	111	0.277	W
H1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:11	7	7.93	29.58	28.16	2.98	2	110	0.261	W
M1	20191028	Cloudy	Modeerate	Mid-Flood	В	7.4	17:49	7.23	8.05	29.84	28.35	3.74	3	110	0.309	W
M1	20191028	Cloudy	Modeerate	Mid-Flood	В	7.4	17:49	7.21	8.17	29.71	28.27	3.65	2	111	0.277	W
M1	20191028	Cloudy	Modeerate	Mid-Flood	М	4.2	17:50	6.99	8.05	29.54	28.12	3.12	3	110	0.213	W
M1	20191028	Cloudy	Modeerate	Mid-Flood	М	4.2	17:50	7.12	8.02	29.54	28.28	3.54	3	111	0.201	W
M1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:51	6.88	8.1	29.8	28.28	3.38	4	110	0.298	W
M1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:51	6.86	8.23	29.76	28.14	2.89	3	111	0.193	W
S1	20191028	Cloudy	Modeerate	Mid-Flood	В	4.1	16:29	7.21	8.06	29.38	28.36	3.57	2	111	0.225	NW
S1	20191028	Cloudy	Modeerate	Mid-Flood	В	4.1	16:29	7.15	8.13	29.47	28.08	3.82	3	111	0.251	W
S1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:30	7.25	7.85	29.76	28.35	3.02	3	110	0.224	W
S1	20191028	Cloudy	Modeerate	Mid-Flood	S	1	16:30	7.2	8.2	29.83	28.32	3.1	2	112	0.246	W
S2A	20191028	Cloudy	Modeerate	Mid-Flood	В	8.2	17:00	6.87	8.09	29.51	28.33	3.54	3	110	0.283	W
S2A	20191028	Cloudy	Modeerate	Mid-Flood	В	8.2	17:00	6.92	8.21	29.83	28.07	3.81	3	111	0.275	W
S2A	20191028	Cloudy	Modeerate	Mid-Flood	М	4.6	17:01	7	7.99	29.32	28.34	3.6	2	111	0.199	W
S2A	20191028	Cloudy	Modeerate	Mid-Flood	М	4.6	17:01	6.89	7.89	29.41	28.14	3.29	3	111	0.235	W
S2A	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:02	6.89	8.11	29.8	28.35	3.36	3	110	0.261	W

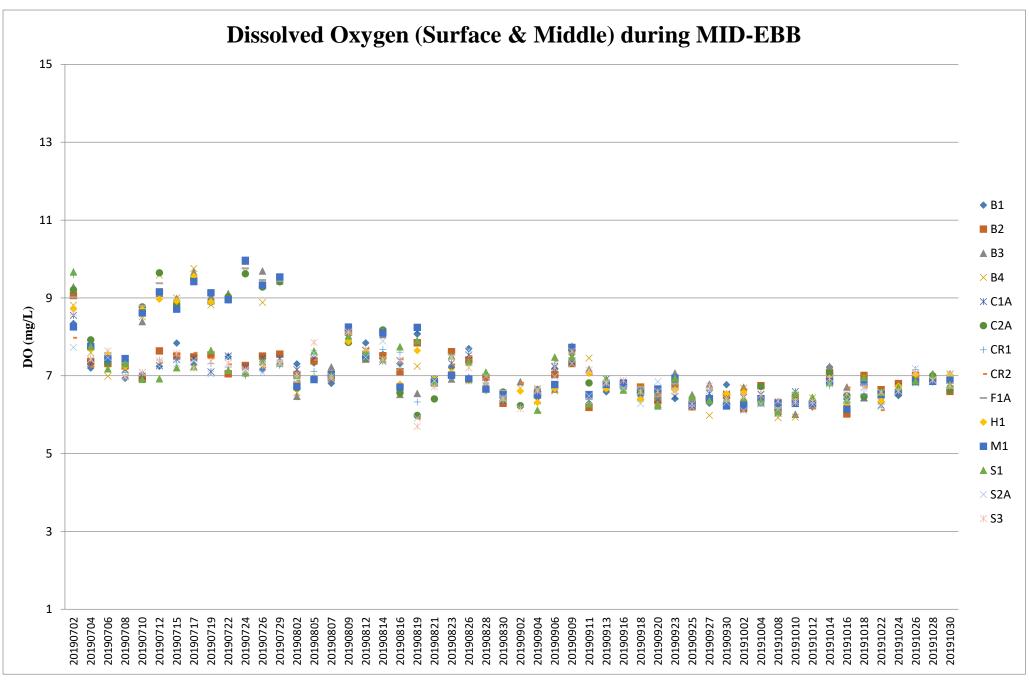
Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S2A	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:02	7.23	8.22	29.53	28.06	3.18	2	111	0.189	NW
S3	20191028	Cloudy	Modeerate	Mid-Flood	В	9.1	17:37	6.89	8.13	29.41	28.22	4.04	3	111	0.278	W
S3	20191028	Cloudy	Modeerate	Mid-Flood	В	9.1	17:37	7.05	8.06	29.77	28.08	4.16	4	111	0.213	W
S3	20191028	Cloudy	Modeerate	Mid-Flood	М	5.05	17:38	7.12	7.86	29.66	28.27	3.32	3	110	0.205	W
S3	20191028	Cloudy	Modeerate	Mid-Flood	М	5.05	17:38	7.02	8.01	29.79	28.09	3.44	3	110	0.254	W
S3	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:39	7	8.03	29.77	28.12	3.45	4	111	0.284	W
S3	20191028	Cloudy	Modeerate	Mid-Flood	S	1	17:39	7.21	7.99	29.54	28.2	3.52	3	111	0.244	NW
B1	20191030	Cloudy	Moderate	Mid-Flood	В	3.6	09:04	7.1	8.29	30.14	27.39	3.73	11	113	0.256	W
B1	20191030	Cloudy	Moderate	Mid-Flood	В	3.6	09:04	7.11	8.17	30.13	27.64	3.62	11	112	0.151	W
B1	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:05	6.87	8.27	30.15	27.68	2.95	10	112	0.187	W
B1	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:05	6.93	8.26	30.29	27.46	2.97	10	113	0.159	NW
B2	20191030	Cloudy	Moderate	Mid-Flood	В	4	09:24	6.84	8.12	30.61	27.66	3.73	12	113	0.284	W
B2	20191030	Cloudy	Moderate	Mid-Flood	В	4	09:24	6.99	8.25	30.44	27.39	3.64	13	113	0.197	W
B2	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:25	6.86	8.04	30.34	27.57	3	10	112	0.267	NW
B2	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:25	7.08	8.29	30.25	27.65	3.25	10	112	0.217	W
В3	20191030	Cloudy	Moderate	Mid-Flood	В	3.3	10:09	7.01	8.2	30.26	27.36	4.1	12	113	0.253	W
В3	20191030	Cloudy	Moderate	Mid-Flood	В	3.3	10:09	6.96	8.06	30.27	27.73	4.08	12	113	0.26	W
В3	20191030	Cloudy	Moderate	Mid-Flood	S	1	10:10	6.72	8.09	30.47	27.39	3.38	11	113	0.306	NW
В3	20191030	Cloudy	Moderate	Mid-Flood	S	1	10:10	6.67	8.24	30.38	27.74	2.96	11	113	0.212	W
B4	20191030	Cloudy	Moderate	Mid-Flood	В	3.5	10:20	7.05	8.25	30.42	27.58	3.9	12	113	0.223	NW
B4	20191030	Cloudy	Moderate	Mid-Flood	В	3.5	10:20	7.03	8.21	30.33	27.63	3.78	13	113	0.222	W
B4	20191030	Cloudy	Moderate	Mid-Flood	S	1	10:21	6.8	8.12	30.44	27.3	2.94	13	113	0.303	W
B4	20191030	Cloudy	Moderate	Mid-Flood	S	1	10:21	6.88	8.13	30.19	27.48	3.05	12	113	0.317	NW
C1A	20191030	Cloudy	Moderate	Mid-Flood	В	10.6	08:39	6.69	8.29	30.51	27.51	3.59	12	113	0.284	W
C1A	20191030	Cloudy	Moderate	Mid-Flood	В	10.6	08:39	6.89	8.2	30.42	27.66	3.73	10	112	0.307	W
C1A	20191030	Cloudy	Moderate	Mid-Flood	М	5.8	08:40	6.83	8.14	30.48	27.41	3.09	11	113	0.279	NW
C1A	20191030	Cloudy	Moderate	Mid-Flood	М	5.8	08:40	6.99	8.19	30.33	27.4	3.04	10	113	0.29	NW
C1A	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:41	7.2	8.15	30.47	27.65	3.25	11	114	0.184	W
C1A	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:41	6.99	8.07	30.55	27.6	3.24	10	113	0.184	W

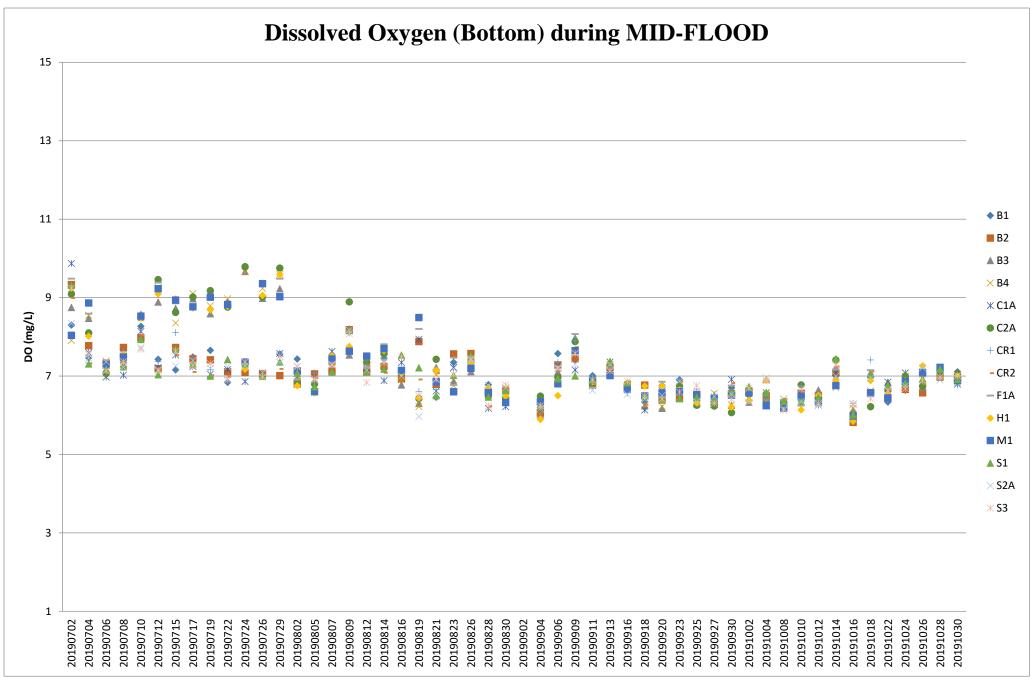
Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
C2A	20191030	Cloudy	Moderate	Mid-Flood	В	10.8	08:02	7.21	8.15	30.18	27.63	3.8	10	114	0.19	W
C2A	20191030	Cloudy	Moderate	Mid-Flood	В	10.8	08:02	6.89	8.12	30.49	27.62	3.68	11	113	0.299	NW
C2A	20191030	Cloudy	Moderate	Mid-Flood	М	5.9	08:03	7.1	8.27	30.49	27.4	3.19	10	113	0.216	W
C2A	20191030	Cloudy	Moderate	Mid-Flood	М	5.9	08:03	7.02	8.29	30.17	27.73	3.03	10	113	0.235	W
C2A	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:04	6.96	8.04	30.57	27.77	3.28	8	113	0.171	W
C2A	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:04	6.81	8.12	30.19	27.26	2.93	9	114	0.273	NW
CR1	20191030	Cloudy	Moderate	Mid-Flood	В	11.6	08:20	6.87	8.26	30.17	27.47	3.45	16	113	0.231	W
CR1	20191030	Cloudy	Moderate	Mid-Flood	В	11.6	08:20	6.66	8.24	30.18	27.67	3.77	17	113	0.297	W
CR1	20191030	Cloudy	Moderate	Mid-Flood	М	6.3	08:21	7	8.23	30.61	27.76	3.55	13	113	0.249	W
CR1	20191030	Cloudy	Moderate	Mid-Flood	М	6.3	08:21	7.03	8.04	30.19	27.43	3.16	13	113	0.226	NW
CR1	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:22	6.98	8.2	30.54	27.32	3.16	12	114	0.306	W
CR1	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:22	7.1	8.11	30.21	27.58	3.31	12	113	0.307	NW
CR2	20191030	Cloudy	Moderate	Mid-Flood	В	10	08:51	6.76	8.2	30.19	27.37	3.53	16	113	0.22	NW
CR2	20191030	Cloudy	Moderate	Mid-Flood	В	10	08:51	7.01	8.27	30.29	27.33	3.72	16	113	0.222	W
CR2	20191030	Cloudy	Moderate	Mid-Flood	М	5.5	08:52	6.94	8.16	30.37	27.32	3.59	16	113	0.302	W
CR2	20191030	Cloudy	Moderate	Mid-Flood	М	5.5	08:52	6.93	8.03	30.13	27.62	3.56	17	112	0.145	W
CR2	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:53	7.1	8.27	30.22	27.66	3.45	19	113	0.165	W
CR2	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:53	6.73	8.26	30.44	27.3	3.16	18	112	0.177	W
F1A	20191030	Cloudy	Moderate	Mid-Flood	В	6.7	10:05	6.91	8.12	30.41	27.8	3.7	8	113	0.183	W
F1A	20191030	Cloudy	Moderate	Mid-Flood	В	6.7	10:05	6.9	8.1	30.39	27.45	3.66	8	112	0.206	W
F1A	20191030	Cloudy	Moderate	Mid-Flood	М	3.85	10:06	7.18	8.11	30.59	27.79	3.04	7	113	0.171	W
F1A	20191030	Cloudy	Moderate	Mid-Flood	М	3.85	10:06	7.05	8.22	30.16	27.68	3.15	8	113	0.207	W
F1A	20191030	Cloudy	Moderate	Mid-Flood	S	1	10:07	6.67	8.28	30.63	27.56	3.37	7	114	0.16	NW
F1A	20191030	Cloudy	Moderate	Mid-Flood	S	1	10:07	7.08	8.07	30.2	27.42	2.96	6	113	0.256	W
H1	20191030	Cloudy	Moderate	Mid-Flood	В	7.6	09:10	6.87	8.25	30.61	27.37	3.83	12	114	0.164	W
H1	20191030	Cloudy	Moderate	Mid-Flood	В	7.6	09:10	7.13	8.17	30.49	27.78	3.65	14	113	0.222	W
H1	20191030	Cloudy	Moderate	Mid-Flood	М	4.3	09:11	6.94	8.23	30.59	27.68	3.19	12	114	0.25	W
H1	20191030	Cloudy	Moderate	Mid-Flood	М	4.3	09:11	6.91	8.03	30.13	27.33	3.3	12	113	0.282	NW
H1	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:12	6.85	8.13	30.56	27.29	3.36	11	114	0.234	W

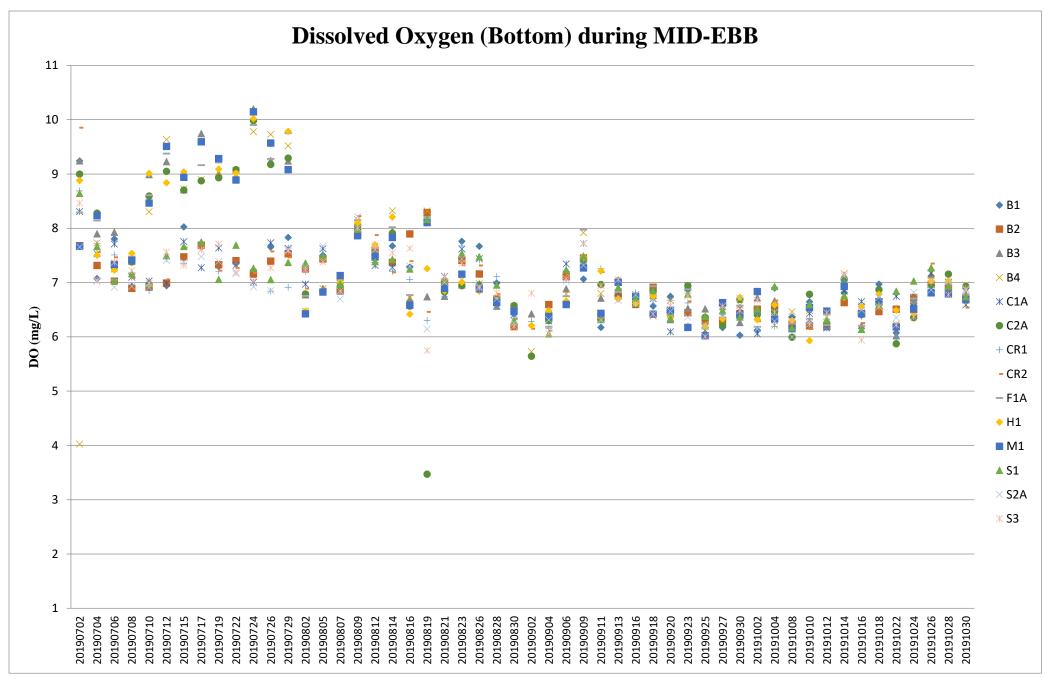

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
H1	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:12	6.9	8.28	30.28	27.64	3.13	12	113	0.316	W
M1	20191030	Cloudy	Moderate	Mid-Flood	В	6.8	10:48	7.03	8.08	30.38	27.57	3.85	14	113	0.163	W
M1	20191030	Cloudy	Moderate	Mid-Flood	В	6.8	10:48	6.73	8.21	30.45	27.41	3.6	13	113	0.3	W
M1	20191030	Cloudy	Moderate	Mid-Flood	М	3.9	10:49	6.94	8.04	30.39	27.76	3.46	15	113	0.287	W
M1	20191030	Cloudy	Moderate	Mid-Flood	М	3.9	10:49	6.82	8.28	30.5	27.27	3.19	16	113	0.282	W
M1	20191030	Cloudy	Moderate	Mid-Flood	S	1	10:50	6.79	8.17	30.63	27.32	2.83	19	113	0.27	NW
M1	20191030	Cloudy	Moderate	Mid-Flood	S	1	10:50	7.18	8.02	30.14	27.62	3.05	18	113	0.269	W
S1	20191030	Cloudy	Moderate	Mid-Flood	В	4.1	09:14	6.7	8.12	30.41	27.35	3.41	12	113	0.284	W
S1	20191030	Cloudy	Moderate	Mid-Flood	В	4.1	09:14	7.12	8.03	30.32	27.39	3.52	13	113	0.321	NW
S1	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:15	7.21	8.28	30.61	27.51	2.9	7	114	0.216	W
S1	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:15	7.01	8.08	30.6	27.78	3.02	7	112	0.293	NW
S2A	20191030	Cloudy	Moderate	Mid-Flood	В	8.2	09:44	7.09	8.18	30.12	27.68	3.73	19	113	0.283	W
S2A	20191030	Cloudy	Moderate	Mid-Flood	В	8.2	09:44	6.92	8.07	30.44	27.6	3.42	20	113	0.237	W
S2A	20191030	Cloudy	Moderate	Mid-Flood	М	4.6	09:45	7.17	8.06	30.61	27.31	3.33	18	113	0.143	W
S2A	20191030	Cloudy	Moderate	Mid-Flood	М	4.6	09:45	7.16	8.23	30.25	27.38	3.23	19	112	0.208	NW
S2A	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:46	7.01	8.2	30.54	27.37	3.21	17	114	0.311	W
S2A	20191030	Cloudy	Moderate	Mid-Flood	S	1	09:46	6.9	8.13	30.4	27.53	3.33	17	114	0.242	W
S3	20191030	Cloudy	Moderate	Mid-Flood	В	8.1	08:40	7.04	8.18	30.43	27.49	3.74	11	112	0.168	W
S3	20191030	Cloudy	Moderate	Mid-Flood	В	8.1	08:40	6.96	8.14	30.44	27.73	3.99	12	112	0.271	W
S3	20191030	Cloudy	Moderate	Mid-Flood	М	4.55	08:41	7	8.1	30.33	27.31	3.59	12	113	0.322	NW
S3	20191030	Cloudy	Moderate	Mid-Flood	М	4.55	08:41	6.82	8.03	30.47	27.74	3.21	12	113	0.288	NW
S3	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:42	7.16	8.23	30.27	27.49	3.37	11	112	0.209	W
S3	20191030	Cloudy	Moderate	Mid-Flood	S	1	08:42	7.19	8.04	30.16	27.52	3.24	12	112	0.286	W
B1	20191030	Cloudy	Moderate	Mid-Ebb	В	3.5	13:05	6.62	8.18	29.73	27.53	3.81	12	112	0.165	SE
B1	20191030	Cloudy	Moderate	Mid-Ebb	В	3.5	13:05	7.17	8.19	30.19	27.52	3.76	10	112	0.238	E
B1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:06	6.75	8.24	29.61	27.21	3.06	12	113	0.116	E
B1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:06	6.98	8.26	29.86	27.5	3.32	11	112	0.277	SE
B2	20191030	Cloudy	Moderate	Mid-Ebb	В	4.3	13:25	6.75	8.16	29.99	27.53	3.44	11	114	0.216	E
B2	20191030	Cloudy	Moderate	Mid-Ebb	В	4.3	13:25	6.7	8.09	29.64	27.26	3.79	11	111	0.118	SE

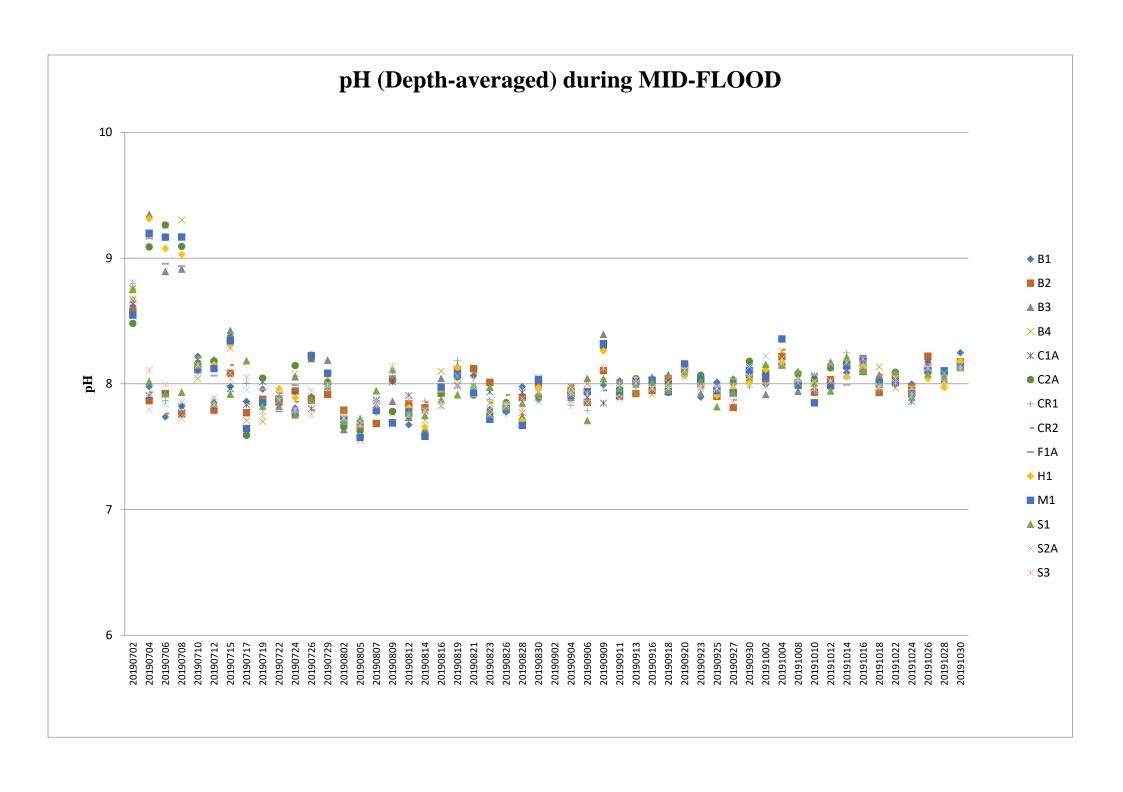

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
B2	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:26	6.46	8.23	29.64	27.17	3.14	9	113	0.165	SE
B2	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:26	6.74	8.13	30	27.44	3.29	10	113	0.202	E
В3	20191030	Cloudy	Moderate	Mid-Ebb	В	3.8	14:08	6.6	8.24	29.95	27.3	3.77	13	110	0.241	SE
В3	20191030	Cloudy	Moderate	Mid-Ebb	В	3.8	14:08	6.97	8.14	30.17	27.39	3.49	13	110	0.148	SE
В3	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:09	6.93	8.19	29.63	27.58	3.38	13	111	0.163	SE
В3	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:09	7.17	8.08	30.15	27.18	2.96	12	109	0.267	SE
B4	20191030	Cloudy	Moderate	Mid-Ebb	В	3.8	14:21	7.08	8.09	30.1	27.11	4	10	110	0.157	E
B4	20191030	Cloudy	Moderate	Mid-Ebb	В	3.8	14:21	6.83	8.23	30.09	27.22	3.6	10	111	0.14	SE
B4	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:22	7.19	8.22	30.09	27.13	3.02	7	110	0.197	E
B4	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:22	6.86	8.27	29.79	27.27	2.94	8	111	0.136	SE
C1A	20191030	Cloudy	Moderate	Mid-Ebb	В	9	12:40	6.7	8.22	30.09	27.79	3.58	12	111	0.152	SE
C1A	20191030	Cloudy	Moderate	Mid-Ebb	В	9	12:40	6.48	8.23	30.04	27.14	3.77	14	111	0.227	SE
C1A	20191030	Cloudy	Moderate	Mid-Ebb	М	5	12:41	7.07	8.16	30.11	27.2	2.9	14	111	0.19	SE
C1A	20191030	Cloudy	Moderate	Mid-Ebb	М	5	12:41	6.5	8.16	29.88	27.38	3.25	12	110	0.143	SE
C1A	20191030	Cloudy	Moderate	Mid-Ebb	S	1	12:42	7.13	8.16	29.67	27.65	3.19	12	110	0.185	SE
C1A	20191030	Cloudy	Moderate	Mid-Ebb	S	1	12:42	6.94	8.17	29.82	27.5	3.27	13	110	0.166	SE
C2A	20191030	Cloudy	Moderate	Mid-Ebb	В	11.1	12:48	6.8	8.24	29.88	27.16	3.46	11	111	0.187	SE
C2A	20191030	Cloudy	Moderate	Mid-Ebb	В	11.1	12:48	7.06	8.07	29.77	27.3	3.56	10	111	0.223	SE
C2A	20191030	Cloudy	Moderate	Mid-Ebb	М	6.05	12:49	6.55	8.2	29.78	27.75	3.3	8	110	0.156	SE
C2A	20191030	Cloudy	Moderate	Mid-Ebb	М	6.05	12:49	6.86	8.18	30.08	27.64	2.91	9	110	0.227	SE
C2A	20191030	Cloudy	Moderate	Mid-Ebb	S	1	12:50	6.73	8.24	29.68	27.23	3.11	8	110	0.186	SE
C2A	20191030	Cloudy	Moderate	Mid-Ebb	S	1	12:50	6.42	8.18	30.03	27.35	3.1	7	110	0.188	E
F1A	20191030	Cloudy	Moderate	Mid-Ebb	В	6.9	14:57	6.91	8.12	29.97	27.43	3.7	10	112	0.2	SE
F1A	20191030	Cloudy	Moderate	Mid-Ebb	В	6.9	14:57	6.65	8.11	29.63	27.52	3.81	10	113	0.124	SE
F1A	20191030	Cloudy	Moderate	Mid-Ebb	М	3.95	14:58	6.71	8.19	30.15	27.59	2.89	9	110	0.129	SE
F1A	20191030	Cloudy	Moderate	Mid-Ebb	М	3.95	14:58	6.71	8.25	29.78	27.68	3.37	8	112	0.218	E
F1A	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:59	6.66	8.24	29.78	27.72	3.12	8	110	0.161	SE
F1A	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:59	6.69	8.17	29.73	27.14	3.17	9	112	0.191	E
H1	20191030	Cloudy	Moderate	Mid-Ebb	В	7.9	14:04	6.46	8.25	29.79	27.54	3.69	14	111	0.195	E

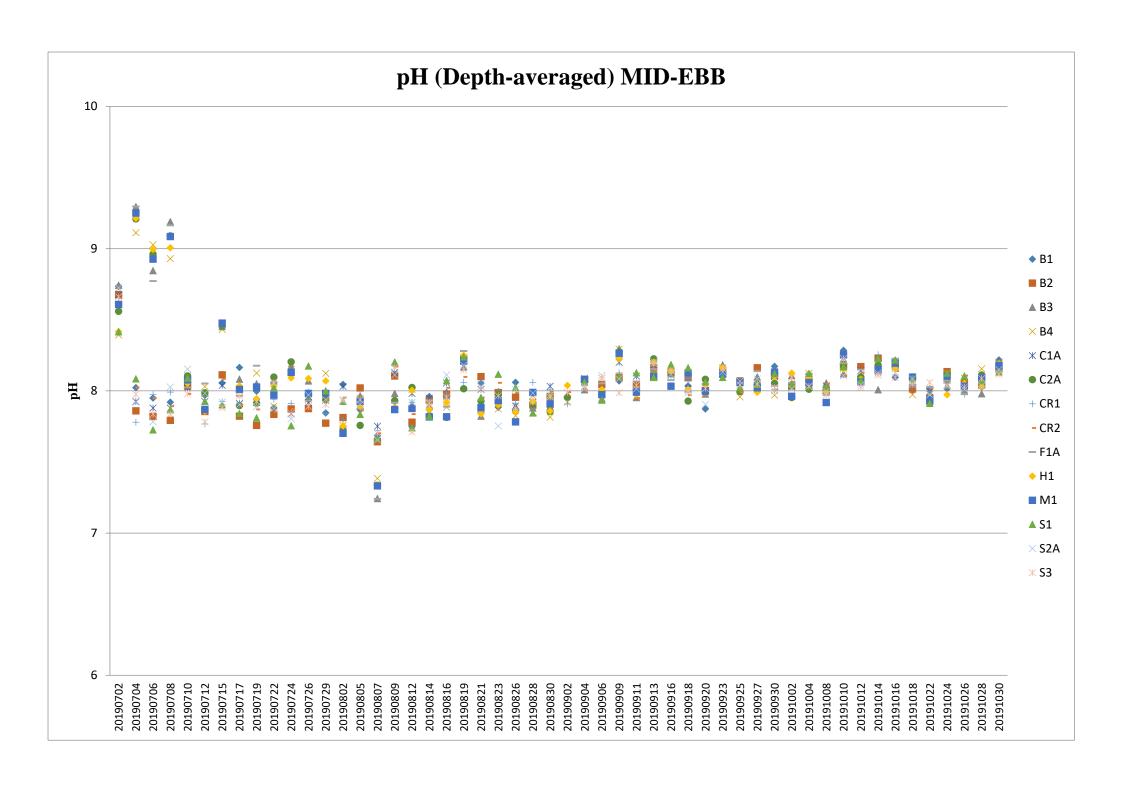

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
H1	20191030	Cloudy	Moderate	Mid-Ebb	В	7.9	14:04	6.87	8.18	29.82	27.23	3.61	14	111	0.142	SE
H1	20191030	Cloudy	Moderate	Mid-Ebb	М	4.45	14:05	6.88	8.2	30.03	27.2	3	12	111	0.245	SE
H1	20191030	Cloudy	Moderate	Mid-Ebb	М	4.45	14:05	7.19	8.1	30.1	27.63	3.2	13	111	0.128	SE
H1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:06	7.09	8.27	30.24	27.17	2.87	13	111	0.224	E
H1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:06	6.93	8.14	29.6	27.41	2.84	12	111	0.273	E
M1	20191030	Cloudy	Moderate	Mid-Ebb	В	7.7	14:52	6.9	8.16	29.78	27.4	3.76	7	113	0.171	SE
M1	20191030	Cloudy	Moderate	Mid-Ebb	В	7.7	14:52	6.47	8.2	30.23	27.57	3.36	8	113	0.177	E
M1	20191030	Cloudy	Moderate	Mid-Ebb	М	4.35	14:53	6.76	8.19	29.93	27.5	3.23	6	113	0.244	SE
M1	20191030	Cloudy	Moderate	Mid-Ebb	М	4.35	14:53	6.85	8.06	29.91	27.18	3.37	7	113	0.178	SE
M1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:54	6.84	8.22	30.14	27.51	3.13	7	114	0.174	SE
M1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	14:54	7.09	8.24	30.11	27.2	2.91	7	113	0.249	SE
CR1	20191030	Cloudy	Moderate	Mid-Ebb	В	11.3	13:08	6.95	8.24	30.02	27.31	3.98	10	113	0.233	SE
CR1	20191030	Cloudy	Moderate	Mid-Ebb	В	11.3	13:08	6.48	8.22	30.03	27.56	3.95	9	113	0.238	E
CR1	20191030	Cloudy	Moderate	Mid-Ebb	М	6.15	13:09	6.97	8.15	29.95	27.21	3.45	10	114	0.157	E
CR1	20191030	Cloudy	Moderate	Mid-Ebb	М	6.15	13:09	7.02	8.14	29.8	27.39	3.14	10	113	0.187	E
CR1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:10	7.04	8.26	30.06	27.21	3.33	9	113	0.229	E
CR1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:10	6.65	8.12	29.82	27.11	3	9	113	0.144	SE
CR2	20191030	Cloudy	Moderate	Mid-Ebb	В	10.5	13:43	6.51	8.28	29.98	27.52	4.04	7	113	0.216	E
CR2	20191030	Cloudy	Moderate	Mid-Ebb	В	10.5	13:43	6.57	8.19	29.98	27.1	3.72	8	113	0.213	E
CR2	20191030	Cloudy	Moderate	Mid-Ebb	М	5.75	13:44	6.91	8.13	30.19	27.6	3.27	8	114	0.268	SE
CR2	20191030	Cloudy	Moderate	Mid-Ebb	М	5.75	13:44	6.47	8.22	29.95	27.79	3.07	7	113	0.182	SE
CR2	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:45	6.6	8.28	29.69	27.54	2.98	8	113	0.141	E
CR2	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:45	6.96	8.06	30.14	27.14	3.33	8	113	0.163	E
S1	20191030	Cloudy	Moderate	Mid-Ebb	В	4.3	13:15	6.43	8.06	30.23	27.26	3.9	13	113	0.189	SE
S1	20191030	Cloudy	Moderate	Mid-Ebb	В	4.3	13:15	7.05	8.25	29.83	27.31	3.78	11	112	0.213	SE
S1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:16	6.95	8.13	29.86	27.71	3.09	9	113	0.271	SE
S1	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:16	6.62	8.09	29.6	27.56	3.01	8	113	0.24	SE
S2A	20191030	Cloudy	Moderate	Mid-Ebb	В	7.7	13:45	6.69	8.06	29.97	27.42	3.86	10	113	0.198	SE
S2A	20191030	Cloudy	Moderate	Mid-Ebb	В	7.7	13:45	7.03	8.16	30.13	27.65	3.95	9	113	0.203	SE

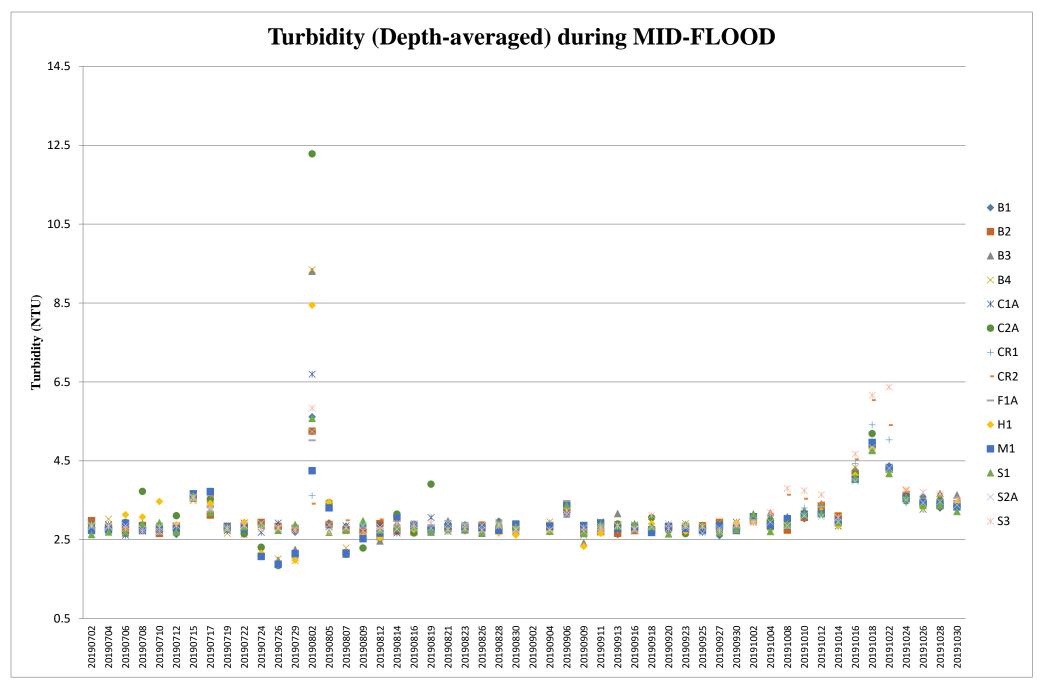

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

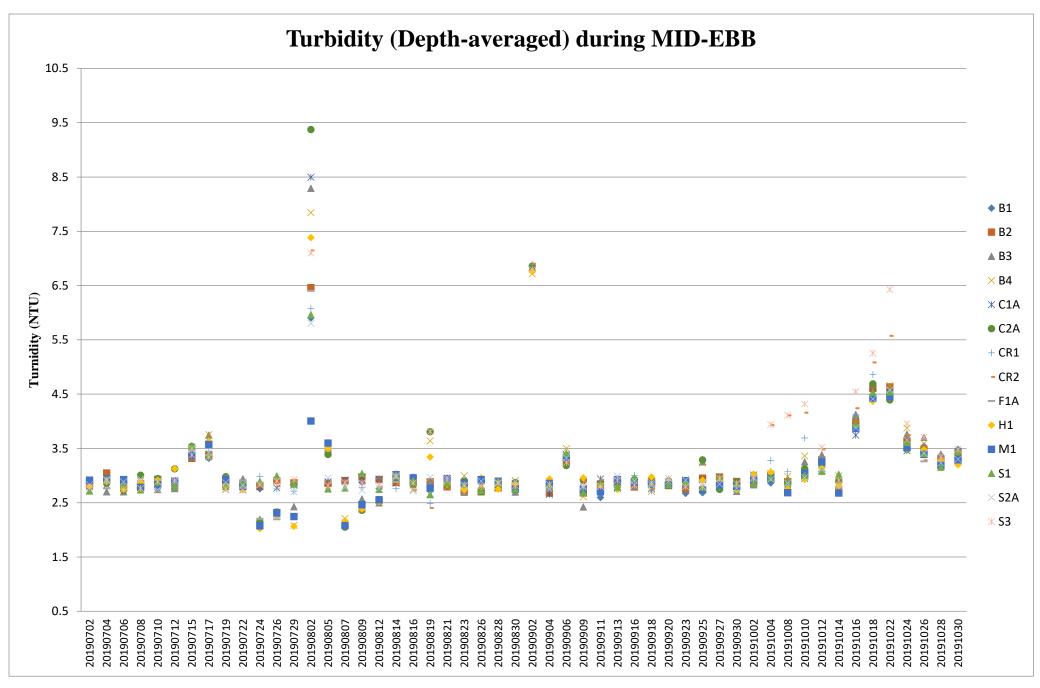

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidty (NTU) note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
S2A	20191030	Cloudy	Moderate	Mid-Ebb	М	4.35	13:46	6.42	8.11	29.92	27.27	3	10	113	0.173	E
S2A	20191030	Cloudy	Moderate	Mid-Ebb	М	4.35	13:46	6.47	8.22	29.99	27.73	2.88	11	113	0.241	E
S2A	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:47	7.17	8.26	30.05	27.21	2.87	10	114	0.25	SE
S2A	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:47	6.95	8.09	30.04	27.26	3.24	10	113	0.265	SE
S3	20191030	Cloudy	Moderate	Mid-Ebb	В	9.4	13:30	7.14	8.13	29.64	27.43	4.08	9	113	0.251	SE
S3	20191030	Cloudy	Moderate	Mid-Ebb	В	9.4	13:30	6.63	8.09	29.97	27.68	3.92	8	113	0.237	SE
S3	20191030	Cloudy	Moderate	Mid-Ebb	М	5.2	13:31	6.63	8.12	30.01	27.44	3.19	7	113	0.222	SE
S3	20191030	Cloudy	Moderate	Mid-Ebb	М	5.2	13:31	6.51	8.06	29.87	27.39	3.22	6	113	0.145	Е
S3	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:32	6.93	8.08	29.83	27.28	3.09	7	113	0.12	SE
S3	20191030	Cloudy	Moderate	Mid-Ebb	S	1	13:32	6.9	8.22	29.9	27.73	3.4	6	113	0.186	Е
Remarks:																
Note 1: S - Sur	face	M - Middle		B - Bottom												
Note 2: Measu	rements of turbidity	would be round	ding to 0.1 NTU fo	r proven accuracy	y as per the eq	uipment spe	ecs during uti	lization of data								

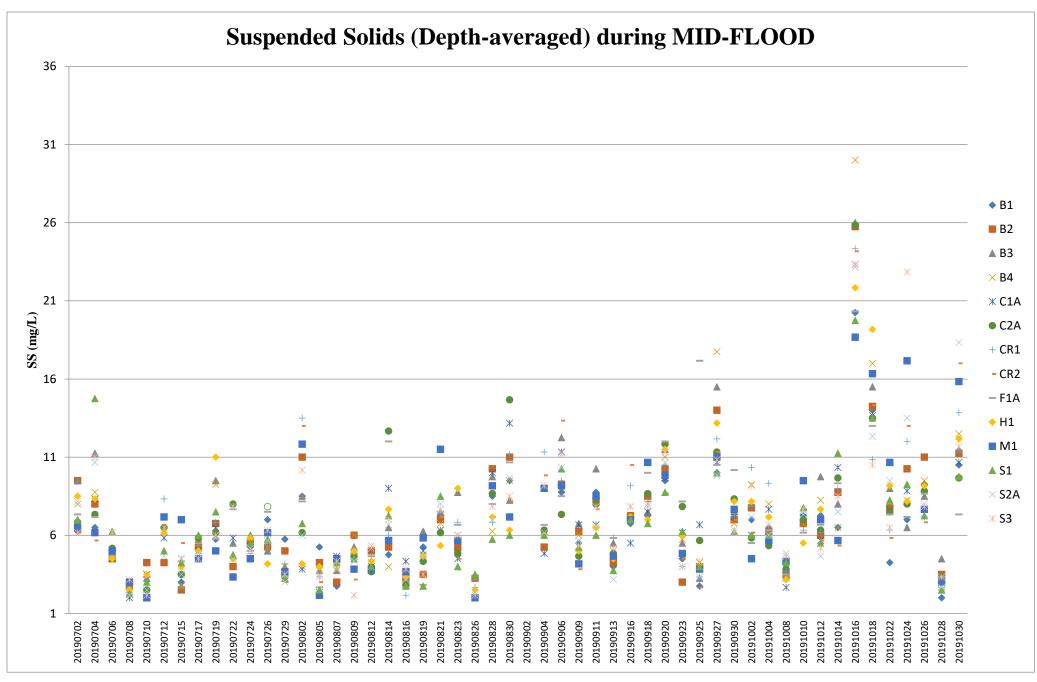


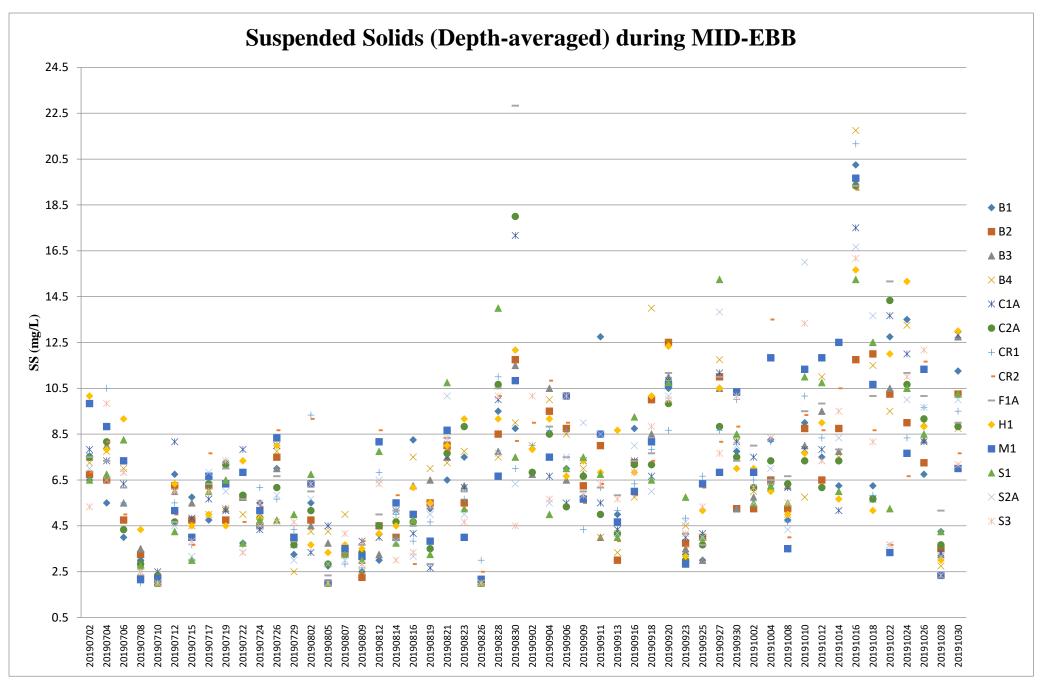


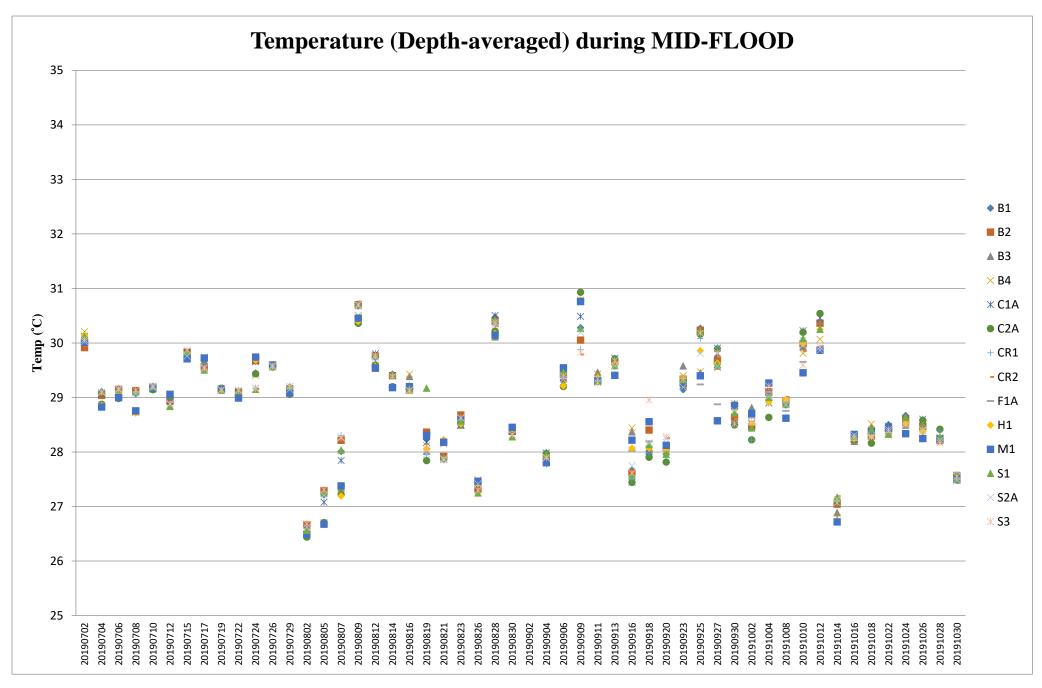


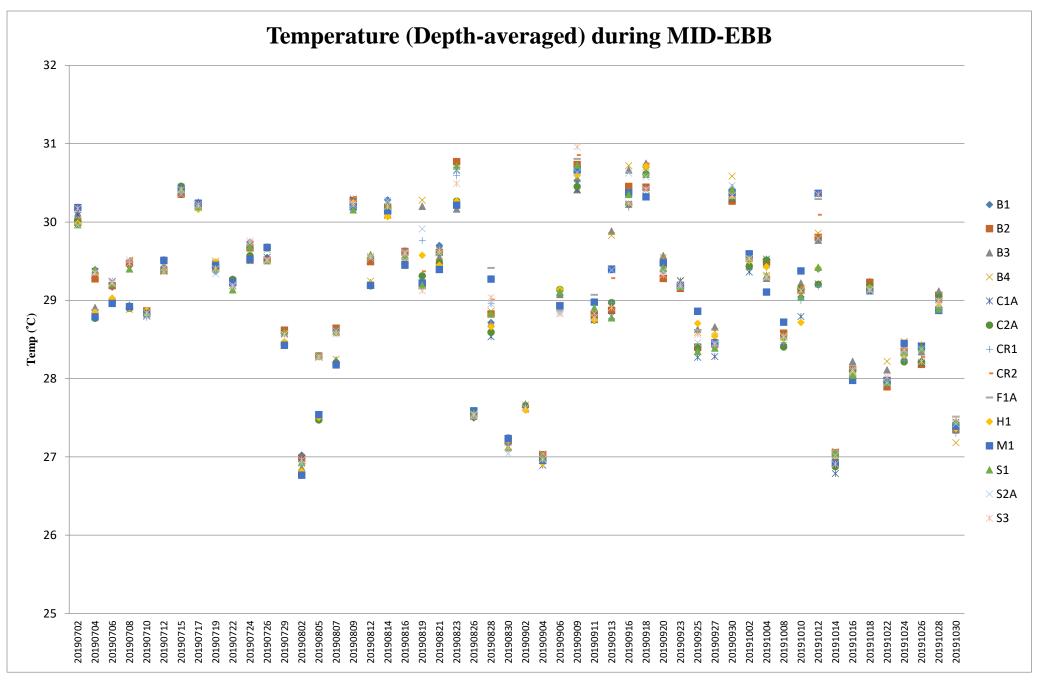


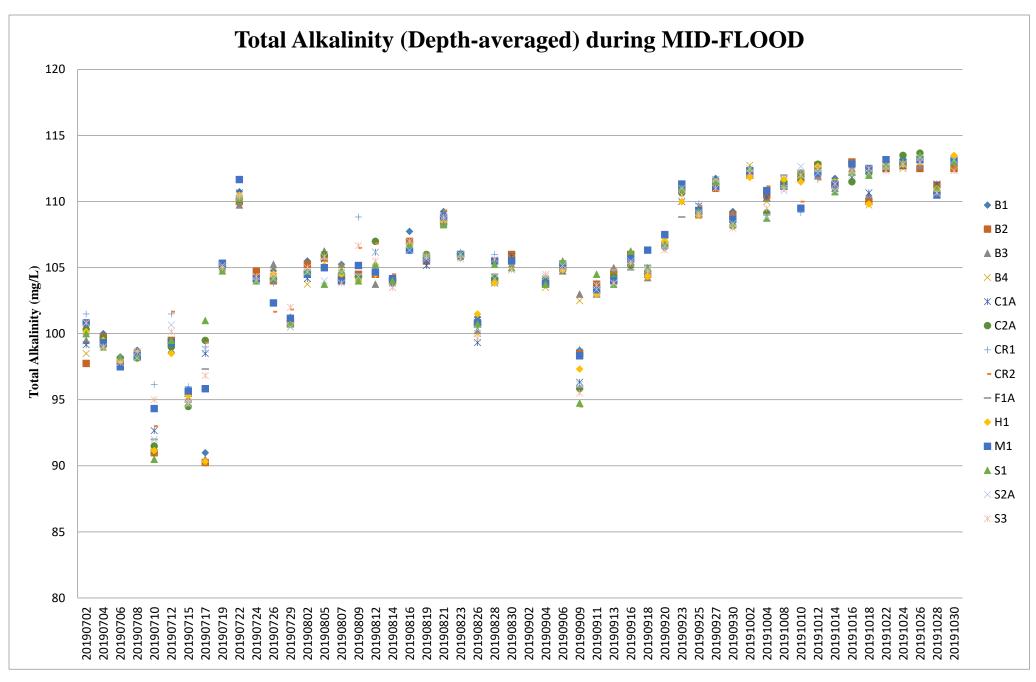


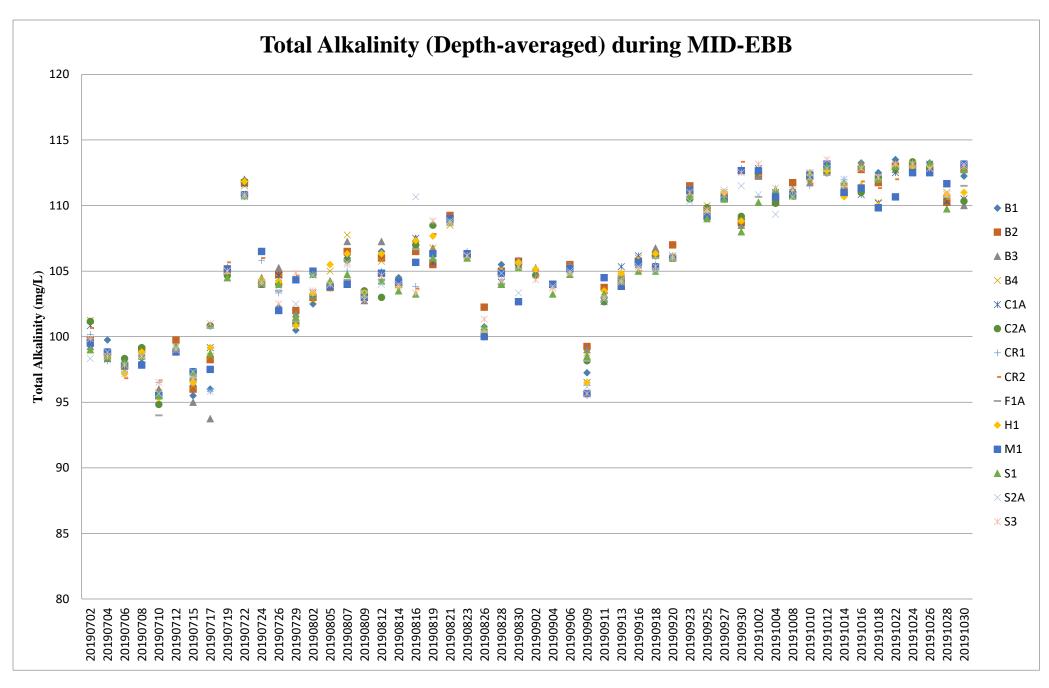



Note: The Action and Limit Level of turbidity can be referred to Table 2.7 & 2.8 of the monthly EM&A report.


Note: The Action and Limit Level of turbidity can be referred to Table 2.7 & 2.8 of the monthly EM&A report.


Note: The Action and Limit Level of suspended solids can be referred to **Table 2.7 & 2.8** of the monthly EM&A report.


Note: The Action and Limit Level of suspended solids can be referred to **Table 2.7 & 2.8** of the monthly EM&A report.


Note: The Action and Limit Level of temperature can be referred to **Table 2.7 & 2.8** of the monthly EM&A report.

Note: The Action and Limit Level of temperature can be referred to Table 2.7 & 2.8 of the monthly EM&A report.

Note: The Action and Limit Level of total alkalinity can be referred to Table 2.7 & 2.8 of the monthly EM&A report.

Note: The Action and Limit Level of total alkalinity can be referred to Table 2.7 & 2.8 of the monthly EM&A report.

Contract No. EP/SP/66 Integrated Waste Mana	5/12 agement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix E	HOKLAS Laboratory Cert	ificate

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 - 《测試及校正實驗所能力的通用規定》所訂的要求 of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行截於香港實驗所認可計劃(認可實驗所名冊)內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 测试或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised international Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO/IEC 17025: 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格深示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論權、國際實驗所認可含作組織及國際標準化組織的關合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

Registration Number : HONDAS 066

註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ACUMEN LABORATORY AND TESTING LIMITED

浩科檢測中心有限公司

Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong

香港新界青衣北担杆山路12路段

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 在認可諮詢委員會的建議下獲香港認可處執行機關接受為

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific tests or calibrations as listed in the scope of accreditation within the test category of

Environmental Testing

此實驗所符合ISO/IEC 17025:2005所訂的要求 並獲認可進行載於認可範圍內下逃測試類別中的指定測試或校正工作

環境測試

This accreditation to ISO/IEC 17025:2005 demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (see joint IAF-ILAC-ISO Communiqué). 並項 ISO/IEC 17025:2005 的認可資格證明此實驗所具傳播定範疇內所須的技術能力並 實施一套實驗所質量管理體系(見圖際語可論理・國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

WONG Wang-wan, Executive Administrator

執行幹事 黃宏華 Issue Date: 16 July 2014 簽發日期: 二零一四年七月十六日

Registration Number: HOKLAS 241

Date of First Registration: 16 July 2014 首次註冊日期:二零一四年七月十六日

This certificate is issued subject to the terms and conditions laid down by HKAS. 本證書按照香港間可處訂立的條款及條件發出

L 001195

Contract No. EP/SP/66. Integrated Waste Mana	gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix F	Water Quality Equipment	Calibration Certificate

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI080157

Date of Issue

06 Sep, 2019

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit 1908, Nos. 301-305 Castle Peak Road, Kwai Chung

N.T., HK

Attn: Mr. Nelson TSUI

PART B - DESCRIPTION

Name of Equipment

Multi Water Quality Checker U-53

Manufacturer

Horiba

Serial Number

BGYP9CKD

Date of Received

Aug 30, 2019

Date of Calibration

Aug 30, 2019 - Sep 05, 2019

Date of Next Calibration(a)

Nov 29, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B APHA 21e 4500-O G

Dissolved Oxygen

APHA 21e 2520 B

Salinity Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	3.98	-0.02	Satisfactory
7.42	7.42	0.00	Satisfactory
10.01	10.11	0.10	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
9.8	9.99	0.19	Satisfactory
27.4	27.3	-0.10	Satisfactory
43.0	42.78	-0.22	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

> LEE Chun-ning, Desmond Senior Chemist

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI080157

Date of Issue

: 06 Sep, 2019

Page No.

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
8.18	8.23	0.05	Satisfactory
6.48	6.67	0.19	Satisfactory
3.5	3.68	0.18	Satisfactory
0.19	0.66	0.47	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.72	-2.80	Satisfactory
20	19.7	-1.50	Satisfactory
30	29.2	-2.67	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(5) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.02	· 	Satisfactory
10	9.72	-2.8	Satisfactory
20	19.8	-1.0	Satisfactory
100	100	0.0	Satisfactory
800	819	2.4	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

marks). =
"Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI070052

Date of Issue

12 July, 2019

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit 1908, Nos. 301-305 Castle Peak Road, Kwai Chung N.T., HK

Attn: Mr. Nelson TSUI

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

15M101091

Jul 09, 2019

Date of Received

Jul 11, 2019

Date of Calibration

Date of Next Calibration(a)

Oct 11, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B

Dissolved Oxygen

APHA 21e 4500-O G APHA 21e 2520 B

Salinity Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.10	0.1	Satisfactory
7.42	7.28	-0.14	Satisfactory
10.01	10.10	0.09	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
15.0	15.0	0.0	Satisfactory
25.0	25.5	0.5	Satisfactory
52.0	53.7	1.7	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is referenced to YSI product specifications.

LEE Chun-ning, Desmond Senior Chemist

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI070052

Date of Issue

12 July, 2019

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
7.68	7.75	0.07	Satisfactory
5.81	5.71	-0.1	Satisfactory
3.20	3.38	0.18	Satisfactory
0.20	0.1	-0.10	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.96	-0.4	Satisfactory
20	20.26	1.3	Satisfactory
30	30.97	3.2	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(5) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.24		Satisfactory
10	10.58	5.8	Satisfactory
20	20.00	0.0	Satisfactory
100	97.60	-2.4	Satisfactory
800	770.00	-3.8	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI080021

Date of Issue

12 Aug, 2019

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit 1908, Nos. 301-305 Castle Peak Road, Kwai Chung N.T., HK

Attn: Mr. Nelson TSUI

PART B - DESCRIPTION

Name of Equipment

Multi Water Quality Checker U-53

Manufacturer

Horiba

Serial Number

L20550GA

Date of Received

Aug 01, 2019

Date of Calibration

Aug 01, 2019 - Aug 08, 2019

Date of Next Calibration(a)

Nov 01, 2019

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B

Dissolved Oxygen

APHA 21e 4500-O G APHA 21e 2520 B

Salinity Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.10	0.10	Satisfactory
7.42	7.42	0.00	Satisfactory
10.01	10.09	0.08	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
14.0	14.37	0.37	Satisfactory
27.0	27.25	0.25	Satisfactory
50.0	49.40	-0.60	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is referenced to YSI product specifications.

LEE Chun-ning, Desmond Senior Chemist

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI080021

Date of Issue

12 Aug, 2019

Page No.

: 2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
8.17	8.16	-0.01	Satisfactory
5.27	5.00	-0.27	Satisfactory
3.52	3.21	-0.31	Satisfactory
0.01	0.00	-0.01	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.88	-1.2	Satisfactory
20	20.40	2.0	Satisfactory
30	30.41	1.4	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(5) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.28		Satisfactory
10	10.0	0.0	Satisfactory
20	21.0	5.0	Satisfactory
100	103	3.0	Satisfactory
800	806	0.8	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司 OUALITY DDO TEST CONSULT LIMITE

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

AMENDMENT CALIBRATION REPORT

Amendment Test Report No. : AI100146A

Amendment Test Report Date of Issue : 13 November 2019

Superseded Test Report No. : AI100146

Superseded Test Report Date of Issue : 23 October 2019

Page No. : 1 of 3

PART A – CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit 1908, Nos. 301-305 Castle Peak Road, Kwai Chung N.T., HK

Attn: Mr. Nelson TSUI

PART B - CHANGE OF INFORMATION

	dment report supersedes any previous report number AI10014 te selected checkbox:	6 dated 23 October 2019 with this reference, the details as indicated
☐ Superse	de relevant page(s) of previous report by the attached:	
		(page no)
Superse Superse	de whole previous report by the attached amendment test repo	rt.
The superso	eded pages or the superseded report become invalid. Please de	stroy them immediately or return to our office for cancelation
Amendmer	nt detail(s):	
No.	Description of the amendment	Reason of the amendment
1	Name of Equipment	Туро
2	Serial Number	Typo

~ CONTINUED ON NEXT PAGE ~

FUNG Yuen-ching Aries Laboratory Manager

專業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com

Tel: (852) 3956 8717; Fax: (852) 3956 3928

AMENDMENT CALIBRATION REPORT

Amendment Test Report No. : AI100146A

Amendment Test Report Date of Issue : 13 November 2019

Superseded Test Report No. : AI100146

Superseded Test Report Date of Issue : 23 October 2019

Page No. : 2 of 3

PART C - DESCRIPTION

Name of Equipment : Multi Water Quality Checker U-53

Manufacturer : Horiba
Serial Number : UHB5F2BB
Date of Received : Oct 15, 2019
Date of Calibration : Oct 23, 2019
Date of Next Calibration(a) : Jan 22, 2020

PART D – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

ParameterReference MethodpH at 25°CAPHA 21e 4500-H* BDissolved OxygenAPHA 21e 4500-O GSalinityAPHA 21e 2520 BTurbidityAPHA 21e 2130 B

Temperature Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Oxidation-Reduction Potential APHA 22e 2580 B

PART E – CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.08	0.08	Satisfactory
7.42	7.50	0.08	Satisfactory
10.01	10.02	0.01	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10.0	10.06	0.06	Satisfactory
27.1	27.23	0.13	Satisfactory
45.1	45.05	0.05	Satisfactory

Tolerance limit of temperature should be less than ± 2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

⁽a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

⁽b) The results relate only to the calibrated equipment as received

⁽c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

⁽d) "Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.

e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com

Tel: (852) 3956 8717; Fax: (852) 3956 3928

AMENDMENT CALIBRATION REPORT

Amendment Test Report No. : AI100146A

Amendment Test Report Date of Issue : 13 November 2019

Superseded Test Report No. : AI100146

Superseded Test Report Date of Issue : 23 October 2019

Page No. : 3 of 3

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
7.43	7.40	-0.03	Satisfactory
5.00	5.11	+0.11	Satisfactory
2.00	1.67	-0.33	Satisfactory
0.11	0.34	+0.23	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.68	-3.2	Satisfactory
20	19.84	0.8	Satisfactory
30	30.48	1.6	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(5) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.53		Satisfactory
10	9.40	-6.0	Satisfactory
20	18.96	-5.2	Satisfactory
100	93.9	-6.1	Satisfactory
800	751	-6.1	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

(6) Oxidation-Reduction Potential

Expected Reading (mV)	Displayed Reading (mV)	Tolerance (mV)	Results
228	236	8	Satisfactory

Tolerance limit of Oxidation-Reduction Potential should be less than $\pm 10~(mV)$

~ END OF REPORT ~

Remark(s): -

⁽f) "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

⁽⁸⁾ The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Contract No. EP/SP/66. Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Ventur
Appendix G	Event / Action Plan for Wat	er Quality Exceedance

Event		Act	ion	
	ET	IEC	SO	Contractor
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next working day of exceedance. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)

Event		Ac	tion	
	ET	IEC	SO	Contractor
Limit level	Inform the SO and confirm	Discuss with ET and	Discuss with IEC, ET and	Inform the SO and confirm
being exceeded	notification of the non-	Contractor on the mitigation	Contractor on the proposed	notification of the non-
by one	compliance in writing;	measures;	mitigation measures;	compliance in writing;
sampling day	Rectify unacceptable practice;	Review proposals on	Request Contractor to	Rectify unacceptable practice;
	Check all plant and	mitigation measures submitted	critically review the working	Check all plant and
	equipment;	by Contractor and advise the	methods;	equipment;
	Consider changes of working	SO accordingly;	Make agreement on the	Consider changes of working
	methods;	Assess the effectiveness of	mitigation measures to be	methods;
	Discuss with Contractor, IEC	the implemented mitigation	implemented.	Discuss with ET, IEC and SO
	and SO and propose	measures.	Assess the effectiveness of	and propose mitigation
	mitigation measures to IEC	(The above actions should be	the implemented measures.	measures to IEC and SO
	and SO within 3 working days;	taken within 1 working day	(The above actions should be	within 3 working days;
	Implement the agreed	after the exceedance is	taken within 1 working day	Implement the agreed
	mitigation measures.	identified)	after the exceedance is	mitigation measures.
	(The above actions should be		identified)	(The above actions should be
	taken within 1 working day			taken within 1 working day
	after the exceedance is			after the exceedance is
	identified)			identified)

Event		Act	tion	
	ET	IEC	SO	Contractor
Limit level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC, SO and Contractor. Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after Limit Level being exceeded by two consecutive sampling days)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Limit Level being exceeded by two consecutive sampling days)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented measures. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after Limit Level being exceeded by two consecutive sampling days)	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and SO and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures; As directed by the SOR, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after Limit Level being exceeded by two consecutive sampling days)

Contract No. EP/SP/66. Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix H	Noise Monitoring Equipmer Certificate	nt Calibration

Description:

Certificate of Calibration

for

Sound Level Meter

	Manufacturer:	NTi	
	Type No.:	XL2 (Serial No.: A2	A-13661-E0)
	Microphone:	ACO 7052 (Serial N	To.: 73784)
	Preamplifier:	NTi Audio MA220 ((Serial No.:6282)
		Submitted by:	
	Customer:	Acuity Sustainability	Consulting Limited
	Address:	Unit 1908, Nos. 301-	305 Castle Peak Road, Kwai
		Chung, N.T.	
Upon receipt fo	or calibration, the ins	strument was found to be:	
✓ Within☐ Outside			
the allowable to	olerance.		
		on are traceable to National S Cong Special Administrativ	Standards via: e Region Standard & Calibration
Date of receipts	: 27 September 2019)	
Date of calibra	tion: 30 September 2	2019	
Calibrated by:_	My Calibration Tec	Certified by:_ hnician	Mr. Tang Cheuk Hang
Date of issue: 3	0 September 2019	micum	Quality Manager
Certificate No.:	APJ19-096-CC001		(A+A) *L Page 1 of 4

(A+A)* Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

24.2 °**C**

Air Pressure:

1006 **hPa**

Relative Humidity:

40.8 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV180064

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)			Appl	ied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
40-140	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)			Appl	ied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. '	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	Veighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
20 120	dD A	SPL	Fast	94	1000	94.0	Ref
30-130 dBA		SFL	Slow	94	1000	94.0	±0.3

Certificate No.: APJ19-096-CC001

Page 2 of 4

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Weighting		Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.0	±2.0
					63	93.8	±1.5
					125	93.9	±1.5
0.50					250	93.9	±1.4
30-130	dB	SPL	Fast	94	500	93.8	±1.4
					1000	94.0	Ref
					2000	94.1	±1.6
					4000	94.2	±1.6
					8000	94.5	+2.1; -3.1

A-weighting

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Weighting		Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.6	-39.4 ±2.0
					63	67.7	-26.2 ±1.5
					125	77.8	-16.1 ±1.5
					250	85.2	-8.6 ±1.4
30-130	dBA	SPL	Fast	94	500	90.7	-3.2 ±1.4
					1000	94.0	Ref
					2000	95.3	+1.2 ±1.6
					4000	95.2	+1.0 ±1.6
					8000	93.3	-1.1+2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)				Appl	Applied value		IEC 61672 Class 1
Range, dB	Freq. Weighting		Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	91.0	-3.0 ±2.0
					63	93.1	-0.8 ±1.5
					125	93.6	-0.2 ±1.5
					250	93.9	-0.0 ±1.4
30-130	dBC	SPL	Fast	94	500	93.9	-0.0 ± 1.4
					1000	94.0	Ref
					2000	93.9	-0.2 ±1.6
					4000	93.4	-0.8 ±1.6
			N N		8000	92.5	-3.0 +2.1: -3.1

Certificate No.: APJ19-096-CC001

Page 3 of 4

Room 422, Leader Industrial Centre, 57-59 Au Pui Wan Street, Fo Tan, Shatin, N.T., Hong Kong Tel: (852) 2668 3423 Fax: (852) 2668 6946

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.15
	125 Hz	± 0.10
	250 Hz	± 0.05
-	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: APJ19-096-CC001

Page 4 of 4

Result | Detector | Duration [ms]

6. INTERNAL NOISE LEVEL (acoustical - compensated)

LEVEL METER function; Characteristic: A; (Backlight - off)

Indication [dB]

Noise measured in special chamber, with reference microphone G.R.A.S type 40AN No. 73421

-	SEL			MAX		MCSUIT
		0.00	Slow		Fad	Detector
Error (dB)	Indication [dB]	Error [dB]	Indication [dB]	Error (dB)	Indication [dB]	Duration [ms]
0.0	60.1	-0.0	58.0	0.0	60.1	1000
-0.0	57.1	-0.0	56.0	0.0	60.0	200
0.0	53.1	-0.1	52.6	0.0	59.1	200
0.0	50.1	-01	49.8	0.0	57.5	100
-0.0	47.1	-0.1	46.9	-0.0	55.3	30
0.0	43.1	-0.1	42.9	-0.0	51.8	20
0.0	10.1	-0.1	40.0	-0.0	48.9	10
-0.0	37.1	-0.1	37.0	0.0	46.0	3
-0.0	33.1	1.0-	32.9	-0.0	42.0	- 2
-0.0	30.1			-0.0	39.0	
-0.0	27.0			1.0-	36.0	0.5

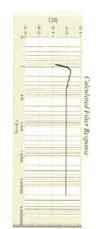
Range: Low: Steady level nominal result = 35dB

	SEL			MAX		Result
		31011	Slow	1000	Fact	Detector
Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Duration [ms]
-00	351	1.0-	33.0	-0.0	351	1000
-00	321	-0.0	31.0	-0.0	35.0	500
0.0	28.1	-0.1	27.6	0.0	34.1	200

Range: High: Steady level nominal result = 134dB

Result		VAN	Name of the last		SE	2000
Detector	Fact	100	Slow	1000		5
Duration [ms]	Indication [dB]	Error (dB)	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]
1000	134.1	-0.0	132.0	-0.1	134.1	0.0
500	134.0	0.0	130.0	-0.0	131.1	-0.0
200	133:1	0.0	126.6	1.0-	127.1	0.0
100	131.5	0.0	123.8	1.0-	124.1	0.0
50	1293	-00	120.9	-0.1	121.1	-0.0
20	125.8	-0.0	1170	1.0-	117.1	0.0
10	122.9	-0.1	114.0	1.0-	1141	-0.0
1.51	120.0	0.0	0.111	-0.1	1111	-0.0
2	116.0	-00	107.0	10-	107.1	-0.0
-	113.0	-0.0			104.0	-0.1
0.5	110.0	-0.1			101.0	-0.1
0.25	107.0	-0.1		10	98.0	-0.1

Range: High; Steady level nominal result = 54dB


2000	133.		***************************************	MAY		Result
	100	20000	Slow	1001	Fact	Detector
Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Duration [ms]
0.0	541	-0.0	52.10	0.0	54.1	1000
0.0	51.1	-0.0	50.0	0.0	54.0	500
0.0	47.1	-0.1	46.6	0.0	53.1	200
0.0	44.1	-0.1	43.9	0.0	51.5	100
0.0	41.1	-0.1	40.9	-0.0	49.3	50

Range High, Steady level nominal result = 45dB

2000	SFI			MAX		Result	
	0		Slow	- mon	Fact	Detector	
Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Duration [ms]	
0.0	45.2	-0.0	43.1	0.0	45.2	1000	
0.0	42.2	-00	41.0	0.0	45.1	500	
0.1	38.2	-0.1	37.7	0.0	44.2	200	

4. FREQUENCY RESPONSE (electrical)

LEVEL METER function: Characteristic Z, Range Low, Input signal -120 dB.

Measured Filter Response with Preamplifier SV18
(f-frequency, L-level)

	- Complete	0.0	1000	0.0	25
0.0	20000	0.0	400	0.0	20
0.0	16000	0.0	250	0.0	6
0.0	8000	0.0	125	0.0	2.5
0.0	4000	0.0	6.3	-0.1	0
E dB	1/10/1	T JdB	[PH]	I MAN	1711

All frequencies are nominal center values for the 1/3 octave bands 000, 00

5. INTERNAL NOISE LEVEL (electrical - compensated)

LEVEL METER function, Range: Low; (Back-light - off); Calibration factor: (idB

Characteristic	7	A	0
Level [dB]	≤20	<12	<12

measured with preamplifier SVANTEK type SV18 No. 78763

Manufacturer SVANTEK SVANTEK RIGOL SVANTEK SVANTEK SVAN 401 CONFORMITY & TEST DECLARATION Serial no. ENVIRONMENTAL CONDITIONS DM30155100773 Relative humidity Ambient pressure
25% 1016 hPa TEST EQUIPMENT

Description

 The acoustic calibration was performed using the Sound Calibrator and is traceable to the GUM (Central Office of Measures) reference standard -sound level calibrator type 4231 No 2292773. I. Herewith Syantek company declares that this instrument has been calibrated and tested in compliance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.

The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment &
procedures which permit comprehensive quality assurance verification of all data supplied herein.

4. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd

Calibration specialist: Krzysztof Czachor

Test date: 2019-02-06

*** SI 1N 971 No. 27731 page 2 ***

*** E signal 15,122 ON 126 NEJN ***

FACTORY CALIBRATION DATA OF THE SVAN 971 No. 77731

with preamplifier SVANTEK type SV18 No. 78763 and with microphone ACO type 7052E No. 72681

I. CALIBRATION (acoustical)

LEVEL METER function; Range: Low; Reference frequency; 1000Hz. Sound Pressure Level: 113.97 dB.

C	A	Z	Characteristic
113.97	113.97	113.97	Correct value dB
114.01	114.01	114.01	Indication [db]
0.04	0.04	0.04	Error dB

Calibration measured with the microphone ACO type 7052E No. 72681, Calibration factor: -0.20 dB

2. LINEARITY TEST (electrical)

Nominal result LEQ [dB]	24.0	25.0	26.0	28.0	30.0	40.0	60.0
Error (dB)	0.1	0.0	0.0	0.0	-0.0	0.0	0.0

LEVEL METER function: Range: Low; Characteristic: A; f sa= 1000 Hz

Error dB	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.0
LEVEL METER function, Range	Range Low, Characteristic	acteristic	A: f = 8000 Hz	2H 000					
function.	Low, Char	acteristic	A: f 8	000 Hz	30.0	40.0	60.0	80.0	0.001

LEVEL METER fu

Nominal result LEQ [dB]	34.0	35.0	36.0	38.0	40.0	60.0	80.0	
Error [dB]	0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	

Nominal result LEQ [dB] Error [dB]

LEVEL METER function, Kange	High, Cha	acteristic	A: 1 an = 80	ZH OW						
Nominal result LEQ [dB]	34.0	35,0	36.0	38.0	40.0	60.0	80.0	100.0	120.0	136.0
Error [dB]	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0

1/3 OCTAVE (1kHz): Range: Low: f ...= 1000 Hz

80.0 10	40.0 60.0 80.0 100.0
00 008 0.00	000 800 1000
	0 100.0
100.0	0.0
	1200

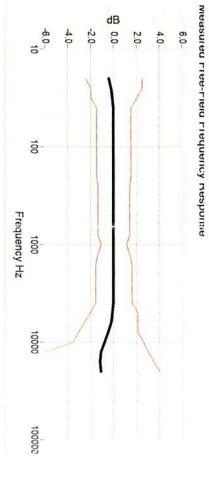
3. TONE BURST RESPONSE

LEVEL METER function, Characteristic: A; f ... = 4000 Hz; Burst duration: 2s

Range: Low; Steady level nominal result = 120dB

SEL		MAX				Result
,			Slow		Fast	
Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Duration [ms]
0.0	120.1	-0.0	118.0	0.0	120.1	1000
-00	117.1	-0.0	115.9	0.0	120.0	500
0.0	113.1	-0.1	1126	0.0	119.1	200
0.0	1101	-0.1	109.8	0.0	117.5	100
-0.0	107.1	-0.1	8 901	-0.0	115.2	50
0.0	103.1	40.1	102.9	-0.0	1111.8	20
0.0	100.1	1.01	99.9	-0.0	108.9	10
-0.0	97.0	40.1	96.9	0.0	106.0	S
-0.0	93:1	1.0-	91.0	-0.0	102.0	2
-0.0	90.0	- 22		-0.0	99.0	1
1.0-	87.0	25		10-	96.0	0.5
1.0-	83.9	100	,	1.0-	93.0	0.25

1/2" Prepolarized Condenser Microphone


Calibration Chart

Type: 7052E Serial No: 72681

Measured sensitivity: 35.41 mV/Pa

Manufacturer: ACO PACIFIC

Environmental Calibration Conditions: 22 °C 28 % 1010 hPa

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-13548-E0)

Microphone:

ACO 7052 (Serial No.:60997)

Preamplifier:

NTi Audio MA220 (Serial No.:5287)

Submitted by:

Customer:

Acuity Sustainability Consulting Limited

Address:

Unit 1908, iPlace, Nos. 301-305 Castle Peak Road,

Kwai Chung, New Territories

Upon receipt for calibration, the instrument was found to be:

Calibration Technician

Within

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 8 January 2019

Date of calibration: 10 January 2019

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 10 January 2019

Certificate No.: APJ18-157-CC001

Page 1 of 4

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

22.3 °C

Air Pressure:

1006 hPa

Relative Humidity:

71.3 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV180064

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	ange, dB Freq. Weighting Time Weighting		Level, dB	Frequency, Hz	dB	Specification, dB	
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Range, dB Freq. Weighting		Time Weighting	Level, dB Frequency, Hz		dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Weighting Time V		Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	Ref
30-130	UDA	SPL	Slow	94	1000	94.0	±0.3

Certificate No.: APJ18-157-CC001

Page 2 of 4

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Weighting		Time Weighting	Level, dB Frequency, Hz		dB	Specification, dB
		-			31.5	94.0	±2.0
					63	94.1	±1.5
					125	94.1	±1.5
					250	94.0	±1.4
30-130	dB	SPL	Fast	94	500	94.0	±1.4
					1000	94.0	Ref
					2000	93.8	±1.6
					4000	93.8	±1.6
					8000	92.7	+2.1; -3.1

A-weighting

Sett	ing of Uni	it-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	ghting Time Weighting		Level, dB Frequency, Hz		Specification, dB
					31.5	54.8	-39.4 ±2.0
					63	67.9	-26.2 ±1.5
					125	78.0	-16.1 ±1.5
					250	85.4	-8.6±1.4
30-130	dBA	SPL	Fast	94	500	90.8	-3.2±1.4
		1			1000	94.0	Ref
					2000	95.1	+1.2±1.6
					4000	94.8	+1.0±1.6
					8000	91.6	-1.1+2.1; -3.1

C-weighting

Sett	ing of Uni	t-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Weighting Time Weig		Time Weighting	Level, dB	Level, dB Frequency, Hz		Specification, dB
					31.5	91.0	-3.0 ±2.0
					63	93.2	-0.8 ±1.5
					125	93.9	-0.2 ±1.5
		BC SPL	Fast	94	250	94.0	-0.0±1.4
30-130	dBC				500	94.0	-0.0±1.4
					1000	94.0	Ref
					2000	93.7	-0.2 ±1.6
					4000	93.0	-0.8±1.6
					8000	89.7	-3.0 +2.1: -3.1

Certificate No.: APJ18-157-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.05
	63 Hz	± 0.05
	125 Hz	± 0.10
	250 Hz	± 0.10
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.10
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Page 4 of 4

ISO9001 certified

Sound Level Calibrator

Type: SV33B Serial No: 83042

Calibration Chart

Sound pressure level: 114.07 dB (THD: 0.74 %)

Frequency: 1000 Hz

Short term level stability: 0.05 dB Frequency stability:

Measurement conditions
Temperature: 23 °C
Relative humidity: 33 % Ambient pressure: 1006 hPa

Reference conditions

Temperature: Relative humidity: 23.0 °C 50 % Ambient pressure: 1013.2 hPa

CONFORMITY & TEST DECLARATION

The stated level is valid at reference conditions. Measured according to IEC 60942:2003. The stated level is relative to 20 μPa .

The level is traceable to GUM (Central Office of Measures, Poland) with a calculated uncertainty less then $\pm 0.15 \text{ dB } (2*\text{sd}).$

Calibration specialist:

Date: 2019-02-21

Contract No. EP/SP/66 Integrated Waste Mana	gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix I	Event / Action Plan for No	ise Exceedance

Frant	Actions to be taken by	Actions to be taken by	Actions to be taken by	Actions to be taken by
Event	Environmental Team as	Independent Environmental	Supervising Officer's	Contractor as
	immediate as practicable	Checker as immediate as	Representative as immediate	immediate as
		practicable	as practicable	practicable
Action Level being exceeded	to the IEC, SO and Contractor; 4. Discuss with the IEC and	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the SO accordingly; Advise the SO on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified). 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified). 	 Submit noise mitigation proposals to IEC and SO; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)
Limit Level being exceeded	 Inform IEC, SO, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and SO on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Discuss amongst SO, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; (The above actions should be taken within 2 working days after the exceedance is identified) 	In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and SO within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the SO until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Contract No. EP/SP/66 Integrated Waste Mana	5/12 agement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix J	Noise Monitoring Data	

Location: Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 1 (M1 /

N_S1)

Monitoring date: 2, 8, 14, 21, 28 October 2019 (Daytime)

2&3, 8&9, 14&15, 21&22, 28&29 October 2019 (Evening & Night

time)

Parameter: L_{eq 30min} (Daytime), L_{eq 5min} (Evening & Night time)

Noise source other than construction activities from

Air-conditioning units nearby

the Project:

Noise Monitoring data:

Date	Start		End	Weather	L _{eq 30min} dB(A) /	Sound Level	Calibrator
	time		time	* * * * * * * * * * * * * * * * * * * *	$L_{eq 5min} dB(A)$	Meter Used	Used
2 Oct 2019	16:01	ı	16:31	Sunny	45.0	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)
2 Oct	19:51	ı	19:56		46.0	XL2 (Serial No.	SV33B (No.
2019	21:51	-	21:56	Fine	52.3	A2A-13548-E0)	83042)
2019	22:51	-	22:56		50.8	A2A-13346-E0)	63042)
2.0	00:51	-	00:56		51.7	7/1 O /G : 1 N	GHOOD AI
3 Oct 2019	02:51	ı	02:56	Fine	52.0	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)
2017	03:51	ı	03:56		47.9	11211 13340 120)	03042)
8 Oct	16:33	_	17:03	Sunny	63.1	XL2 (Serial No.	SV33B (No.
2019				~ 0.1111.5		A2A-13548-E0)	83042)
8 Oct	19:33	-	19:38	Fine	58.0	XL2 (Serial No.	SV33B (No.
2019	21:33	-	21:38	1 1110	58.7	A2A-13548-E0)	83042)
2017	22:33	-	22:38		55.9	11211 13540 120)	03042)
0.0.4	00:33	-	00:38		57.5	VI 2 (C : 1 N	GU22D (N
9 Oct 2019	01:33	-	01:38	Fine	56.6	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)
2017	03:33	ı	03:38		55.8	11211 13340 120)	03042)
14 Oct 2019	16:26	ı	16:56	Sunny	50.9	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
14 Oct	19:26	-	19:31		46.6	VI 2 (Comical No.	CV22D (No
14 Oct 2019	21:26	-	21:31	Fine	46.5	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
2019	22:26	-	22:31		48.0	A2A-13001-EU)	03044)
15 Oct	00:26	-	00:31		44.2	VI 2 (Comiol Ma	CV22D (No
2019	02:26	-	02:31	Fine	43.9	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
2019	03:26	-	03:31		44.0	A2A-13001-EU)	03044)

Date	Start time		End time	Weather	$\begin{array}{c} L_{eq~30min}dB(A)/\\ L_{eq~5min}dB(A) \end{array}$	Sound Level Meter Used	Calibrator Used
21 Oct 2019	16:32	-	17:02	Sunny	56.2	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
21.0 -4	19:32	-	19:37		53.6	VI 2 (Carial Na	CM22D (No
21 Oct 2019	21:32	-	21:37	Fine	54.7	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
2019	22:32	-	22:37		53.2	A2A-13001-E0)	63042)
22 Oct	00:32	-	00:37		49.2	XL2 (Serial No.	SV33B (No.
22 Oct 2019	02:32	-	02:37	Fine	47.5	A2A-13661-E0)	83042)
2019	03:32	-	03:37		45.8		63042)
28 Oct 2019	16:33	-	17:03	Sunny	55.8	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
20 0 -4	19:33	-	19:38		52.0	VI 2 (Carial Na	CM22D (No
28 Oct 2019	21:33	-	21:38	Fine	50.8	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
2019	22:33	-	22:38		52.4	A2A-13001-E0)	63042)
20 Oct	00:33	-	00:38		51.3	VI 2 (Comical No.	CV22D (No
29 Oct	02:33	-	02:38	Fine	51.6	XL2 (Serial No.	SV33B (No.
2019	03:33	-	03:38		49.3	A2A-13661-E0)	83042)

Location: Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 2 (M2 /

N_S2)

Monitoring date: 2, 8, 14, 21, 28 October 2019 (Daytime)

2&3, 8&9, 14&15, 21&22, 28&29 October 2019 (Evening & Night

time)

Nil

Parameter: L_{eq 30min} (Daytime), L_{eq 5min} (Evening & Night time)

Noise source other than construction activities from

the Project:

Noise Monitoring data:

Date	Start time		End time	Weather	$\begin{array}{c} L_{eq~30min}dB(A)/\\ L_{eq~5min}dB(A) \end{array}$	Sound Level Meter Used	Calibrator Used
2 Oct 2019	16:36	-	17:06	Sunny	59.7	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
2 Oct	19:56	-	20:01		57.3	XL2 (Serial No.	SV33B (No.
2019	21:56	-	22:01	Fine	56.1	A2A-13661-E0)	83042)
2017	22:36	-	22:41		56.8	A2A-13001-L0)	03042)
2.0.4	00:36	-	00:41		55.4	MIO (C : 1N	GM22D (M
3 Oct 2019	01:36	-	01:41	Fine	54.8	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
2017	03:36	-	03:41		56.4	11211 13001 120)	03042)
8 Oct 2019	16:26	-	16:56	Sunny	58.8	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
0.0.4	19:26	-	19:31	E.	55.9	VIA (C : 1N	GM22D (M
8 Oct	21:26	-	21:31	Fine	57.5	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
2019	22:26	-	22:31		56.6		83042)
0.0	00:26	-	00:31		55.8	*** * (0	277225 QY
9 Oct 2019	01:26	-	01:31	Fine	58.2	XL2 (Serial No. A2A-13661-E0)	SV33B (No. 83042)
2017	03:26	-	03:31		58.7	A2A-13001-L0)	03042)
14 Oct 2019	16:25	-	16:55	Sunny	53.2	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)
14.0 -4	19:25	-	19:30		54.7	VI 2 (Carial Na	CM22D (No
14 Oct 2019	21:25	-	21:30	Fine	51.4	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)
2019	22:25	-	22:30		54.4	A2A-13340-EU)	03044)
15 Oct	00:25	-	00:30		50.8	VI 2 (Sorial No	SV22B (No
2019	02:25	-	02:30	Fine	50.2	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)
2019	03:25	-	03:30		51.8	A2A-13340-E0)	03042)

Date	Start time		End time	Weather	$\begin{array}{c} L_{eq~30min}dB(A)/\\ L_{eq~5min}dB(A) \end{array}$	Sound Level Meter Used	Calibrator Used	
21 Oct 2019	16:32	-	17:02	Sunny	49.8	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)	
21.0 -4	19:32	-	19:37		52.2	VI 2 (Carial Na	CM22D (No	
21 Oct 2019	21:32	-	21:37	Fine	51.3	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)	
2019	22:32	-	22:37		47.5	A2A-13346-EU)	63042)	
22 Oct	00:32	-	00:37		48.0	XL2 (Serial No.	SV33B (No. 83042)	
22 Oct 2019	02:32	-	02:37	Fine	47.9	A2A-13548-E0)		
2019	03:32	-	03:37		48.5		63042)	
28 Oct 2019	16:32	-	17:02	Sunny	62.2	XL2 (Serial No. A2A-13548-E0)	SV33B (No. 83042)	
20.0-4	19:32	-	19:37		59.1	VI 2 (C: -1 N -	,	
28 Oct 2019	21:32	-	21:37	Fine	49.9	XL2 (Serial No. A2A-13548-E0)	SV33B (No.	
2019	22:32	-	22:37		59.9	A2A-13346-EU)	83042)	
20.024	00:32	-	00:37		49.5	VI 2 (Carial Na	CM22D (No	
29 Oct	02:32	-	02:37	Fine	58.9	XL2 (Serial No.	SV33B (No.	
2019	03:32	-	03:37		60.1	A2A-13548-E0)	83042)	

Location: Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 3 (M3 /

N_S3)

Monitoring date: 2, 8, 14, 21, 28 October 2019 (Daytime)

2&3, 8&9, 14&15, 21&22, 28&29 October 2019 (Evening & Night

time)

Parameter: L_{eq 30min} (Daytime), L_{eq 5min} (Evening & Night time)

Noise source other than construction activities from

Air-conditioning units nearby, dog barking

the Project:

Noise Monitoring data:

Date	Start time		End time	Weather	$\begin{array}{c} L_{eq \ 30min} dB(A) \ / \\ L_{eq \ 5min} dB(A) \end{array}$	Sound Level Meter Used	Calibrator Used
2 Oct 2019	16:33	-	17:03	Sunny	58.9	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)
2 Oct	19:33	-	19:38		55.4	SVAN 971 (Serial	SV33B (No.
2019	21:33	-	21:38	Fine	55.6	No. 77731)	83042)
2019	22:33	-	22:38		57.0	110. 77731)	03042)
2.0 **	00:33	-	00:38		55.9	CNANIO71 (Carial	CV22D (No
3 Oct 2019	02:33	-	02:38	Fine	52.9	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)
	03:33	-	03:38		53.9		, ,
8 Oct 2019	16:36	-	17:06	Sunny	52.2	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)
0.0.4	19:36	-	19:41	т.	51.6	GV/ANI 071 (G . : 1	SV33B (No. 83042)
8 Oct 2019	21:36	-	21:41	Fine	48.9	SVAN 971 (Serial No. 77731)	
2019	22:36	-	22:41		47.9	No. 77731)	
0.0-4	00:36	-	00:41		47.6	CNANIO71 (Carial	CM22D (M-
9 Oct 2019	01:36	-	01:41	Fine	51.0	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)
	03:36	-	03:41		47.4	1101777017	000.2)
14 Oct 2019	16:29	-	17:59	Sunny	50.6	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)
14 Oct	19:29	-	19:34		48.9	CVAN 071 (Comic)	CV22D (No
2019	21:29	-	21:34	Fine	48.1	SVAN 971 (Serial No. 77731)	SV33B (No.
2019	22:29	-	22:34		47.4	190. ///31)	83042)
15 Oct	00:29	-	00:34		44.5	SVAN 971 (Serial	SV33B (No.
2019	02:29	-	02:34	Fine	44.2	No. 77731)	83042)
2019	03:29	-	03:34		44.5	110. ///31)	03042)

Date	Start time		End time	Weather	$\begin{array}{c} L_{eq~30min}dB(A)/\\ L_{eq~5min}dB(A) \end{array}$	Sound Level Meter Used	Calibrator Used	
21 Oct 2019	16:30	1	17:00	Sunny	54.0	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)	
21.0 -4	19:30	-	19:35		52.1	CVANIO71 (Carial	GM22D (No	
21 Oct 2019	21:30	1	21:35	Fine	55.2	SVAN 971 (Serial No. 77731)	SV33B (No.	
2019	22:30	-	22:35		54.7	NO. 77731)	83042)	
22 Oct	00:30	1	00:35	Fine	52.3	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)	
22 Oct 2019	02:30	-	02:35		52.3			
2019	03:30	ı	03:35		53.4			
28 Oct 2019	16:34	1	17:04	Sunny	55.9	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)	
20 0 -4	19:34	ı	19:39		52.3	CVAN 071 (Carial	GMOOD (M	
28 Oct 2019	21:34	1	21:39	Fine	52.4	SVAN 971 (Serial No. 77731)	SV33B (No. 83042)	
2019	22:34	-	22:39		53.1	10.77731)	63042)	
20 Oct	00:34	-	00:39		52.3	CVAN 071 (Comic)	CV22D (No	
29 Oct	02:34	-	02:39	Fine	50.4	SVAN 971 (Serial	SV33B (No.	
2019	03:34	-	03:39		49.3	No. 77731)	83042)	

Contract No. EP/SP/66. Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix K	Waste Flow Table	

吉寶西格斯 - 振華聯營公司 Keppel Seghers - Zhen Hua Joint Venture

14Monthly Summary Waste Flow Table for ______ (year)

Project : Integrated Waste Management Facilities, Phase I

Contract No.: EP/SP/66/12

1 Toject . II	oject : integrated waste Management Pacifities, Phase I									Contract No.: EF/SF/00/12				
		Actual (Quantities of	f Inert C&D	Materials Ger	nerated Mon	thly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill Sand	Imported Fill Public fill	Imported Fill Rock	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemica	l Waste	Others, e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³	(in ,000m ³)	(in ,000m ³)		(in ,000 kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000 m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sub-total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0065
Sep	0	0	0	0	0	2.9619	0	0	0	0	0	0	0	0
Oct	0	0	0	0	0	3.0771	0	0	0	0	0	0	0	0.013
Nov	0	0	0	0	0	6.7871	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	59.0709	0	0	0	0	0	0.2	0.87	0
Total	0	0	0	0	0	71.8970	0	0	0	0	0	0.2	0.87	0.0195

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.

吉寶西格斯 - 振華聯營公司 **Keppel Seghers - Zhen Hua Joint Venture**

Monthly Summary Waste Flow Table for 2019 (year)

Project : In	roject : Integrated Waste Management Facilities, Phase I									Contract No.: EP/SP/66/12				
		Actual	Quantities of	Inert C&D	Materials Ge	nerated Mon	ithly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill Sand	Imported Fill Public fill	Imported Fill Rock	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemica	l Waste	Others, e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³	(in ,000m ³)	(in ,000m ³)	T	(in ,000 kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000 m ³)
Jan	0	0	0	0	0	82.6139	0	0	0	0	0	0	0	0.0065
Feb	0	0	0	0	0	46.7821	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	97.1	0	0.7552	0	0.256	0	0	0	0
Apr	0	0	0	0	0	58.0413	0	0	0	0	0	0	0	0
May	0	0	0	0	0	14.5625	0	1.4648	0	0	0	0	0	0.0065
Jun	0	0	0	0	0	0	0	6.8421	0	0	0	0	0	0
Sub-total	0	0	0	0	0	299.0998	0	9.0621	0	0.256	0	0	0	0.013
Jul	0	0	0	0	0	0	0	0.4289	0	0	0	0	8.4	0.013
Aug	0	0	0	0	0	2.5775	0	10.56	0	0	0	0	0	0
Sep	0	0	0	0	0	6.1081	0	8.4704	0	0	0	0	0	0.0065
Oct	0	0	0	0	0	9.8875	0	7.19	0	0	0	0	0	0
Nov														
Dec														
Total	0	0	0	0	0	317.6729	0	35.7114	0	0.256	0	0	8.4	0.0325

Notes:

- Broken concrete for recycling into aggregates. (1)
- Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials. (2)
- Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.

Contract No. EP/SP/66/1 Integrated Waste Manag	ement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix L	Event / Action Plan for Co	oral Monitoring

Event	Action											
ī	ET Leader II	EC S	о с	ontractor								
Exceedance 3	Check monitoring data Inform the IEC, SO and Contractor of the findings; Increase the monitoring to at least once a month to confirm findings; Propose mitigation measures for consideration	ET and the Contractor;	Discuss with the IEC 1. additional monitoring requirements and any other measures proposed by the 2. ET; Make the agreement on the measures to be 3. implemented.	notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO;								
Limit Level ¹ Exceedance	. Undertake Steps 1-4 as in 1. the Action Level Exceedance. If further 2. exceedance of Limit Level, propose enhancement measures for consideration.	ET and the Contractor;	Discuss with the IEC 1. additional monitoring requirements and any other measures proposed by the 2. ET; Make the agreement on the measures to be 3. implemented.	notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO;								

Contract No. EP/SP/66/12 Integrated Waste Manager		Keppel Seghers – Zhen Hua J	oint Venture
Appendix M	Event / Action Plan for \	White-Bellied Sea E	Eagle

Event	Action							
	Environmental	Audit Team	Contractor					
	Team							
Absence of White-bellied Sea Eagle during a whole day of monitoring.	Inform audit team. Increase monitoring frequency to daily.	 Inform site engineer and contractor. If the absence remains: Review construction activities and noise monitoring records of the associated period; Identify potential causes of the absence; Propose remedial measures, such as change of construction method and sequence; Confirm the feasibility of the proposed remedial measures with site engineer and contractor; Discuss with environmental team about the effectiveness of the proposed remedial measures. 	Implement the agreed remedial measures.					

Contract No. EP/SP/66 Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix N	Exceedance Report	

Statistical Summary of Exceedances in the Reporting Period

	Water Quality (Regular DCM)				
Location	Action Level	Limit Level	Total		
B1	27	0	27		
B2	29	1	30		
В3	27	1	28		
B4	32	2	34		
CR1	29	5	34		
CR2	27	5	32		
F1A	29	1	30		
H1	30	1	31		
S1	23	3	26		
S2A	28	4	32		
S3	33	3	36		
M1	27	9	36		

Noise (Day Time)					
Location	Action Level	Limit Level	Total		
M1 / N_S1	0	0	0		
M2 / N_S2	0	0	0		
M3 / N_S3	0	0	0		
	Noise (E	vening Time)			
Location	Action Level	Limit Level	Total		
M1 / N_S1	0	0	0		
M2 / N_S2	0	0	0		
M3 / N_S3	0	0	0		
	Noise (Night Time)				
Location	Action Level	Limit Level	Total		
M1 / N_S1	0	0	0		
M2 / N_S2	0	0	0		
M3 / N_S3	0	0	0		

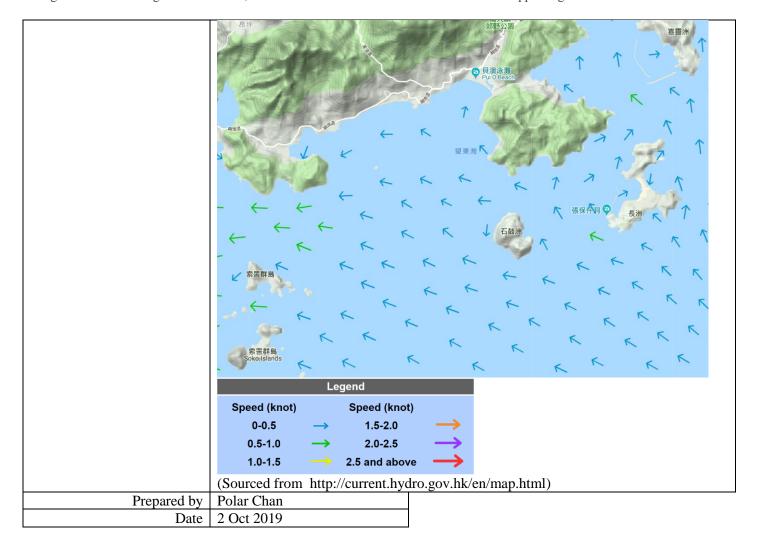
Incident Report on Action Level or Limit Level Non-compliance

Project	Integrated Waste Management Facilities, Phase 1				
Date	25 Sep 2019 (Lab result received on 01 Oct 2019)				
Time	15:02 – 18:32 (Mid-Flood)				
Mid-Flood					
Monitoring Location	F1A B1 S1	4 PROPOSED 132KV SUBMARINE CABLES \$2 +	B4 B3 B4 B3 CR1 AA B3	F1 F1A N F1 F1A N C2 M1 C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
	≥ 12.0 mg/L	-	≥ 14.0 mg/L		
Measurement Level Possible reason for Action or	Impact Station(s) of Exceedance 17.2 mg/L (F1A) Works scheduled on site on 2	Control Station 6.7 mg/L (C1A 5.7 mg/L (C2A	as and a second	Impact Station(s) without Exceedance 2.8 mg/L (B1) 4.0 mg/L (B2) 3.3 mg/L (B3) 4.3 mg/L (B4) 4.0 mg/L (H1) 3.8 mg/L (M1) 4.0 mg/L (S1) 3.3 mg/L (S2A) 4.3 mg/L (S3) 3.3 mg/L (CR1) 2.7 mg/L (CR2) cs. DCM sample coring for	
Limit Level Non-compliance	, 1				

	From MMO monitoring records = 25/00 MMO (
	From MMO monitoring records on 25/09, MMO teams were arranged for two DCM barges (ESC61 & ESC62) and four derrick barges (闫富18, GD-853, GD-851 & Cheung Kee No.10) on that day while no deficiency of silt curtain was found before			
	the commencement of and during construction activity.			
	Silt curtain checking was implemented on Cheung Kee No.10 (13:00), ESC-61 (10:30), ESC-62 (10:45), GD-851 (10:30) & GD-853 (08:30) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No			
	rock filling works was carried out in 同富 18 with refer to the site diary on that day.			
	No geotextiles laying at reclamation area was carried out in FTB-22 with refer to site			
	diary on 25/09.			
	Site tidiness on the barges was checked during the weekly site inspection on 24 Sep 2019. No major observation of improper site practices that could contribute to the			
	increase of the suspended solids recorded.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the			
	weekly inspection, and the Contractor is reminded to implement all applicable			
	mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-flood sampling on 25/09:			
	◆●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●			
	The Operation of the Control of the			
	T COMPANY			
	THE TOTAL PROPERTY OF THE PROP			
	プレイ と 日東東日			
	Z K K T T T T			
	+ + + + + + + + + + + + + + + + + + + +			
	人 强保備的			
	t t t t t t t t t t t t t t t t t t t			
	· · · · · · · · · · · · · · · · · · ·			
	V 紫黒群島			
	La Company of the Com			
	A K K K K K K K K K K K K K K K K K K K			
	Sokolislands K K K K K K K K K K K K K K K K K K K			
	Legend			
	Speed (knot) Speed (knot) 0-0.5 → 1.5-2.0 →			
	0.5-1.0 \rightarrow 2.0-2.5			
	1.0-1.5 - 2.5 and above -			
Prepared by	(Sourced from http://current.hydro.gov.hk/en/map.html) Polar Chan			
Date	2 Oct 2019			
Date	2 00: 2017			

Incident Report on Action Level or Limit Level Non-compliance

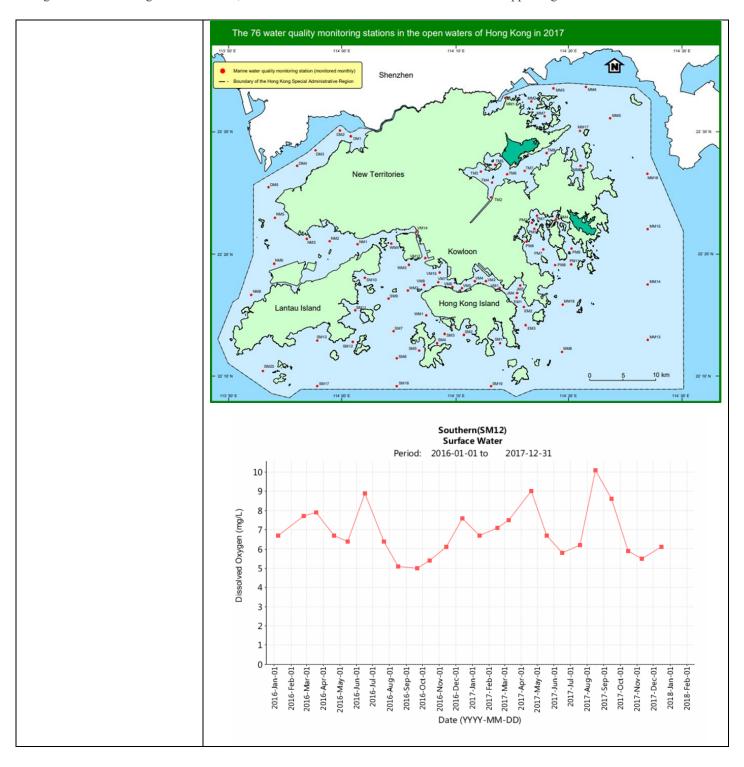
Project	Integrated Waste Management Facilities, Phase 1			
Date	27 Sep 2019 (Lab result received on 02 Oct 2019)			
Time	09:20 – 12:50 (Mid-Ebb)			
	14:50 – 19:00 (Mid-Flood)			
	Mid-F	Ebb		
Monitoring Location	+ B1 S1	PROPOSED RECLAIME FOR THE IMME	SHEK KWU CHAU	F1 F1A N F1 F1A N C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	2.71
	\geq 13.4 mg/L (120% of C1A)		\geq 14.5 mg/L (
Measurement Level	Impact Station(s) of Exceedance	Control Stati	ons	Impact Station(s) without Exceedance
		11.2 mg/L ((71 A)	
	15.3 mg/L (S1)	11.2 mg/L (C 8.8 mg/L (C		10.5 mg/L (B1)
	13.8 mg/L (S2A)	8.8 Hig/L (C.	2A)	11.0 mg/L (B2) 10.5 mg/L (B3)
				11.8 mg/L (B4) 11.0 mg/L (F1A)
				10.5 mg/L (H1)
				6.8 mg/L (M1)
				7.7 mg/L (S3)
				8.7 mg/L (CR1)
Possible reason for Action or Limit Level Non-compliance	mit Level Non-compliance DCM main works, cone penetration test, levelling the sand blanket, rock fil and flattening the formation of caisson seawall.			
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.			
	S1 & S2A are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project.			

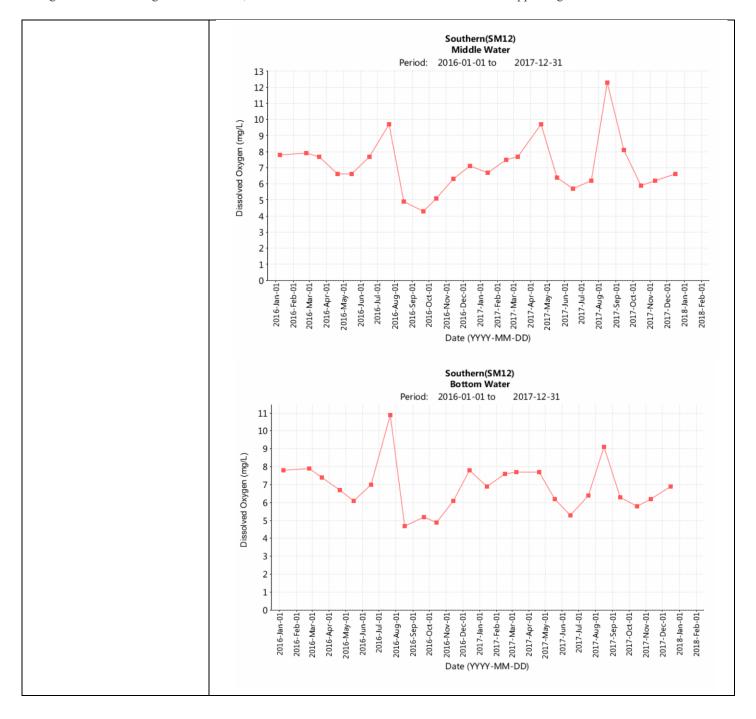

Silt curtain checking was implemented on ESC-61 (16:23), ESC-62 (06:57), GD-851 (09:30), GD-853 (10:00), 同富 18 (07:00), Cheung Kee No.10 (08:00) & 宏建 2 (08:30) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day.

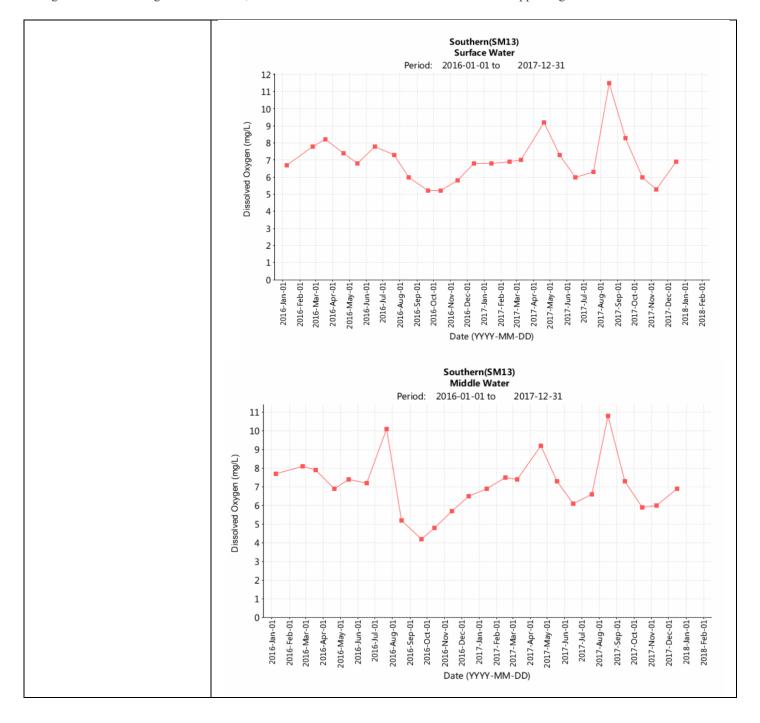
From MMO monitoring records on 27/09, MMO teams were arranged for five derrick barges (GD-853, GD-851, 同富 18, 宏建 2 & Cheung Kee No.10) and two DCM barges (ESC-61 & ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity.

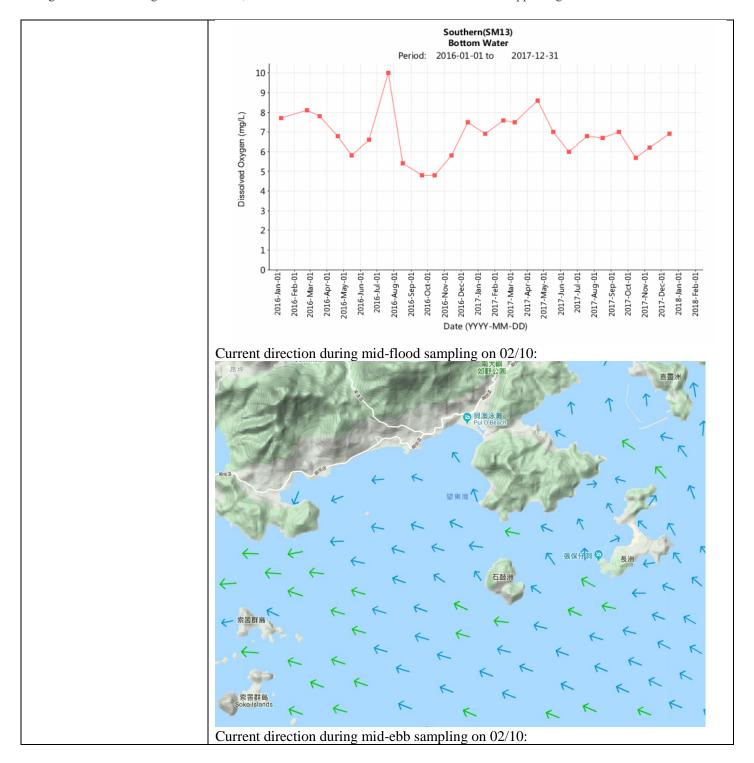
Site tidiness in the present barges in the Project site were checked during weekly site inspection on 24/09. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.

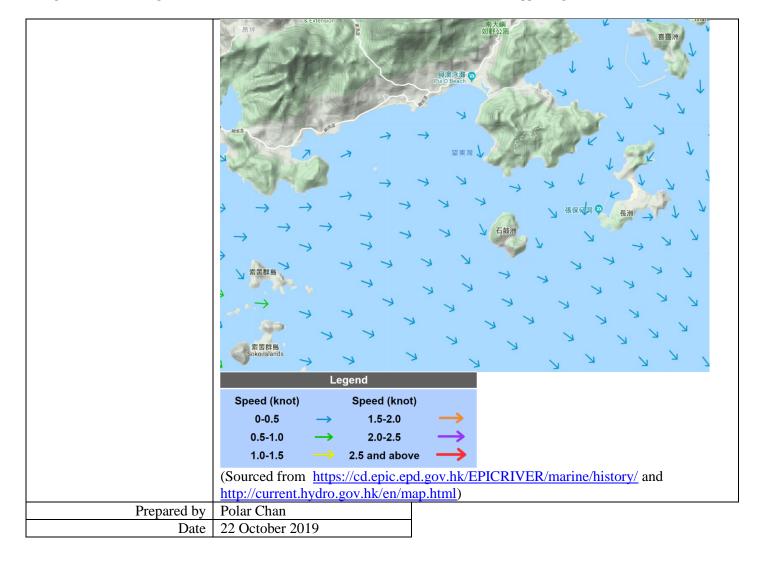
contribute to the increase of the suspended solids recorded. Mid-Flood Monitoring Location B2, B3 & B4 S1-4 PROPOSED 132KV SUBMARINE CABLES H1 ●C2A SHEK KWU CHAU C1 Key A PROPOSED 132KV C1A CR2 SUBMARINE CABLE \$3 MONITORING STATION PROPOSED OUTFALL PROPOSED RECLAIMED AREA THE IWMF SITE BOUNDARY AND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY Parameter Suspended Solid (SS) Action & Limit Levels Action Level Limit Level \geq 13.6 mg/L (120% of C2A) \geq 14.7 mg/L (130% of C2A) Measurement Level Impact Station(s) of **Control Stations** Impact Station(s) without Exceedance Exceedance 14.0 mg/L (B2) 10.7 mg/L (C1A) 10.0 mg/L (B1) 15.5 mg/L (B3) 11.3 mg/L (C2A) 10.5 mg/L (F1A) 17.8 mg/L (B4) 13.2 mg/L (H1) 11.0 mg/L (M1) 10.0 mg/L (S1) 9.8 mg/L (S2A) 10.8 mg/L (S3) 12.2 mg/L (CR1) 11.3 mg/L (CR2) Possible reason for Action or Works scheduled on site on 27/09 include DCM main works, DCM sample coring for Limit Level Non-compliance DCM main works, cone penetration test, levelling the sand blanket, rock filling works and flattening the formation of caisson seawall. Dominating sea current direction was found to be from Southeast to Northwest at

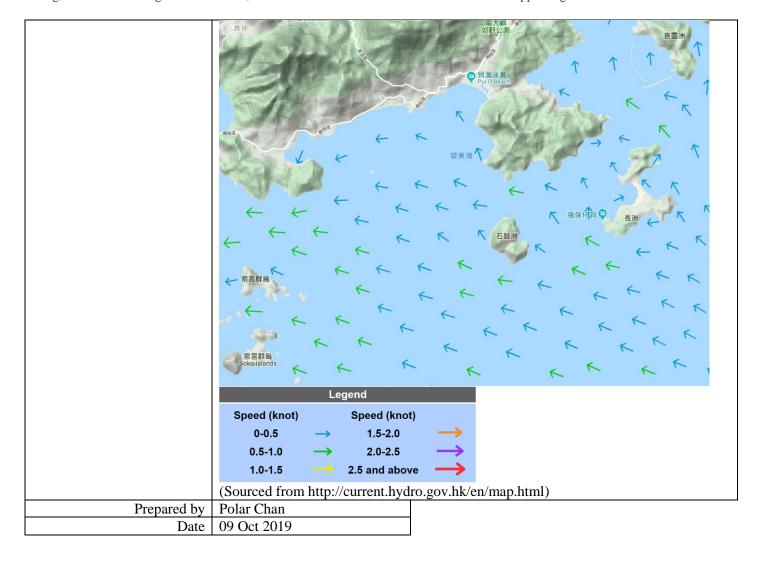

waters around Shek Kwu Chau. B2, B3 & B4 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project. Silt curtain checking was implemented on ESC-61 (16:23), ESC-62 (06:57), GD-851 (09:30), GD-853 (10:00), 同富 18 (07:00), Cheung Kee No.10 (08:00) & 宏建 2 (08:30) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. From MMO monitoring records on 27/09, MMO teams were arranged for five derrick barges (GD-853, GD-851, 同富 18, 宏建 2 & Cheung Kee No.10) and two DCM barges (ESC-61 & ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 24/09. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded. Actions taken / to be taken Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual. Remarks Current direction during mid-ebb sampling on 27/09: Current direction during mid-flood sampling on 27/09:

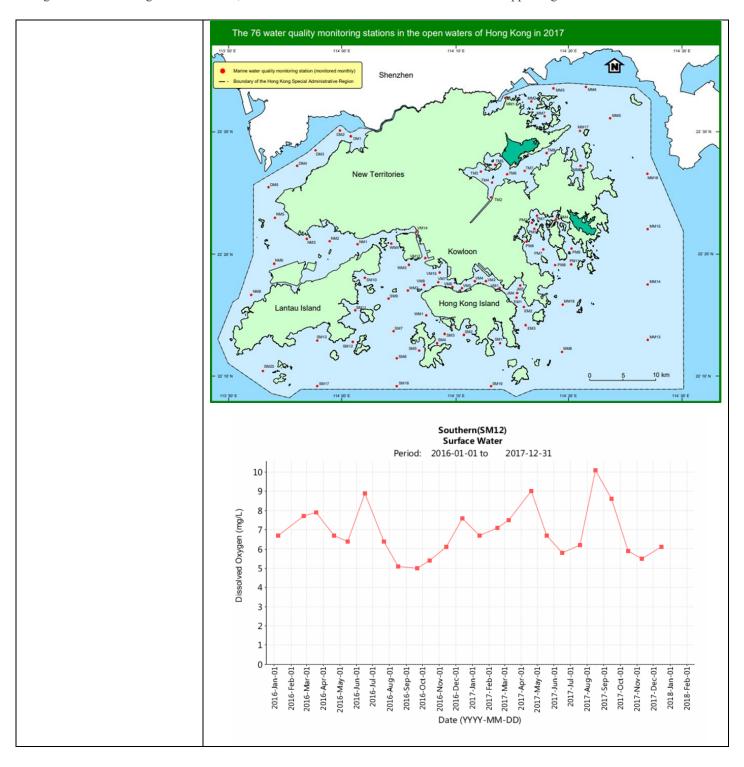


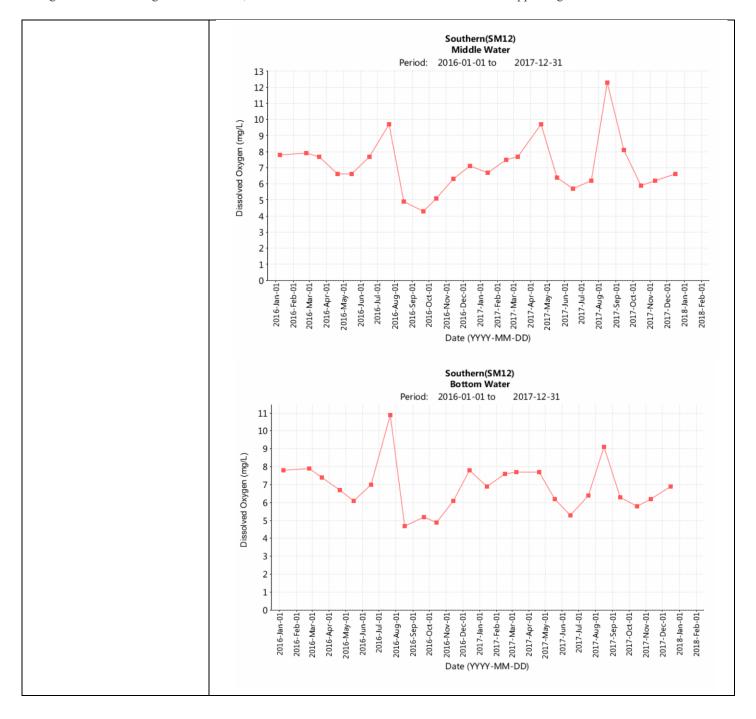

Incident Report on Action Level or Limit Level Non-compliance

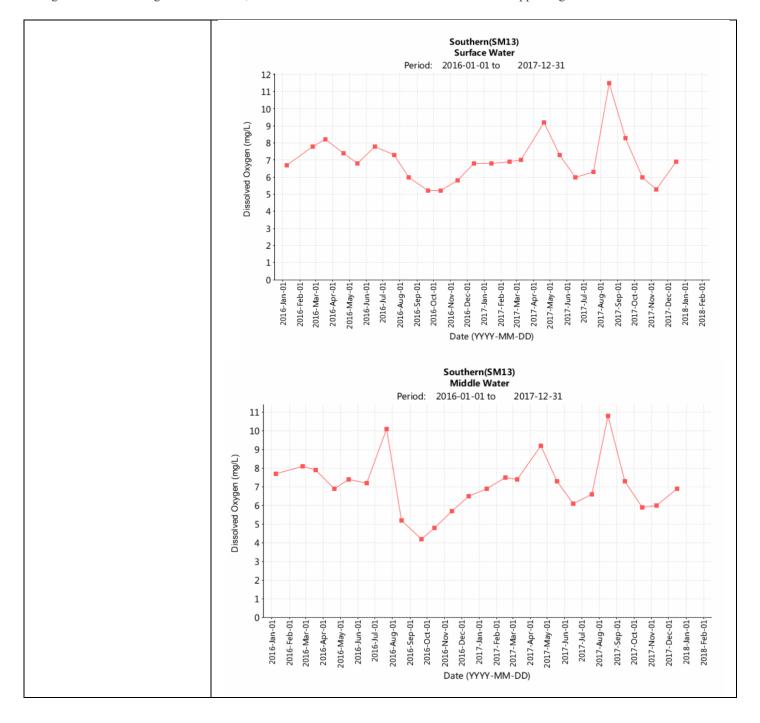

Project	Integrated Waste Management Facilities, Phase 1			
Date	02 October 2019			
Time	08:00 – 12:01 (Mid-Flood)			
	13:08 – 16:38 (Mid-Ebb)			
	Mid-Flood			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3			
	+ B1	PROPOSED CLAMINE CONTINUE INVARIANCE CONTINUE CONTINUE INVARIANCE CONTINUE INVARIANCE CONTINUE CONTINUE CO	SHER KWU CHAU CR2 CR2 CR1	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Donomatan	Dissolved Overson (DO)			
Parameter Action & Limit Levels	Dissolved Oxygen (DO) Action Level		Limit Level	
Action & Limit Levels				
Measurement Level	\leq 7.13 mg/L Impact Station(s) with	Control Stat	$\leq 4.00 \text{ mg/L}$	Impact Station(s) without
Weasurement Level	Exceedance	Control Stati	10118	Exceedance
	6.61 mg/L (B1)	6.52 mg/L (0	<u> </u>	Excedimee
	6.51 mg/L (B2)	6.51 mg/L (0	,	
	6.47 mg/L (B3)	0.51 mg/L (C2A)	
	6.48 mg/L (B4)			
	6.58 mg/L (F1A)			
	6.50 mg/L (H1)			
	6.50 mg/L (M1)			
	6.49 mg/L (CR1)			
	6.44 mg/L (CR2)			
	6.57 mg/L (S1)			
	6.41 mg/L (S2A)			
D 311	6.46 mg/L (S3)	1' 1 1	· (C1 A 0	
	ossible reason for Action or imit Level Non-compliance All monitoring stations including control stations (C1A & C2A) exhibited low and similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.			
Limit Level Non-compliance				
	By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded that exceedance of Action level of DO at all monitoring stations are related to			

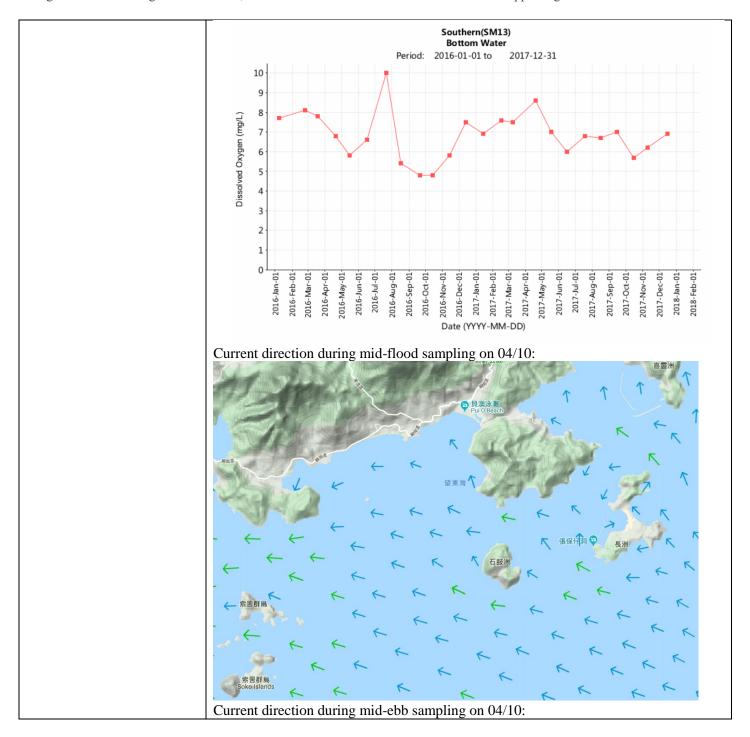

	surrounding weather conditions and deemed to be unrelated to the Project.			
Monitoring Location	Mid-Ebb B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A + B1		F1 F1A N Key A PROPOSED 132KV SUBMARINE CABLE	
		PROPOSED RECLAIMED AREA-FOR THE IMMF	PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Dissolved Oxygen (DO)			
Action & Limit Levels	Action Level	Limit Level		
Measurement Level	≤7.13 mg/L Impact Station(s) of Exceedance 6.14 mg/L (B1)	$\leq 4.00 \text{ mg/L}$ Control Stations 6.31 mg/L (C1A)	Impact Station(s) without Exceedance	
	6.33 mg/L (B2) 6.71 mg/L (B3) 6.53 mg/L (B4) 6.29 mg/L (F1A) 6.48 mg/L (H1) 6.45 mg/L (M1) 6.24 mg/L (CR1) 6.53 mg/L (CR2) 6.47 mg/L (S1) 6.22 mg/L (S2A) 6.54 mg/L (S3)	6.33 mg/L (C2A)		
Possible reason for Action or Limit Level Non-compliance	All monitoring stations including control stations (C1A & C2A) exhibited low and similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018. By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the			
	impact stations near to the Project Site and plausible seasonal factor, it is concluded that exceedance of Action level of DO at all monitoring stations are related to surrounding weather conditions and deemed to be unrelated to the Project.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.			
Remarks	Supporting figures of the EPI	D water data:		

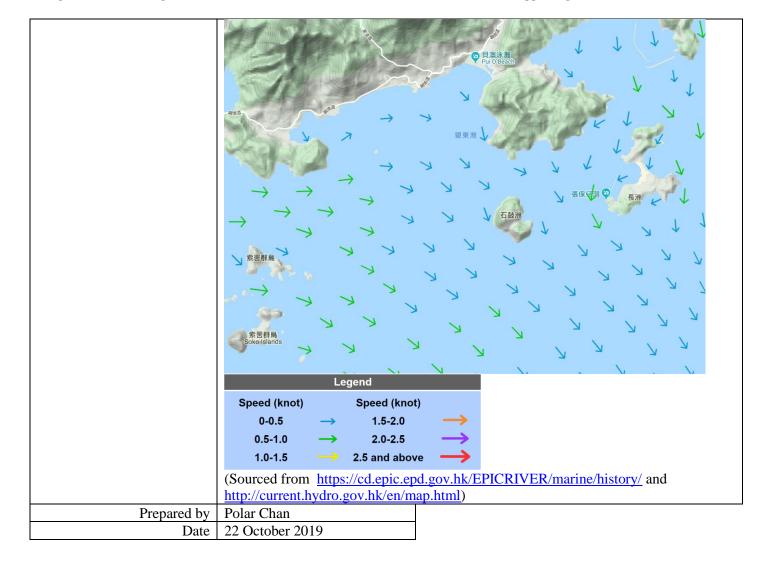


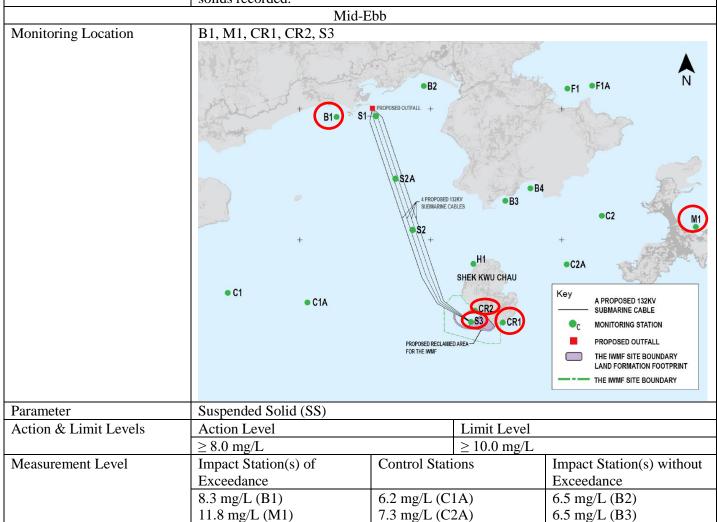



Project	Integrated Waste Management Facilities, Phase 1					
Date	02 Oct 2019 (Lab result recei	ved on 08 Oct	2019)			
Time	08:00 – 12:01 (Mid-Flood)					
		ood				
Monitoring Location	Mid-Flood B3, B4, H1, CR1 & S3 B1 S1 PROPOSED CUITALL + B1 S1 PROPOSED CUITALL + C1 C1 C1A C1A C1A C1A Mid-Flood B2 F1 F1A N F1 F1A N C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED CUITALL THE NUMB SITE BOUNDARY LAND FORMATION FOOTPRINT					
				THE IWMF SITE BOUNDARY		
Parameter	Suspended Solid (SS)					
Action & Limit Levels	Action Level		Limit Level			
	\geq 8.0 mg/L		$\geq 10.0 \text{ mg/L}$			
Measurement Level	Impact Station(s) of	Control Stati	ons	Impact Station(s) without		
	Exceedance			Exceedance		
	8.0 mg/L (B3)	6.0 mg/L (C1	1A)	7.0 mg/L (B1)		
	9.3 mg/L (B4)	5.8 mg/L (C2	2A)	7.8 mg/L (B2)		
	8.2 mg/L (H1)			5.5 mg/L (F1A)		
	10.3 mg/L (CR1)			4.5 mg/L (M1)		
	9.2 mg/L (S3)			6.2 mg/L (CR2)		
	6.0 mg/L (S1					
				7.2 mg/L (S2A)		
Possible reason for Action or	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.					
Limit Level Non-compliance		au. lated stream di on, exceedanc	· ·	•		
	waters around Shek Kwu Cha B3 & B4 are located at unre far away) to the works locati	au. lated stream di ion, exceedanc	es of these mor	•		



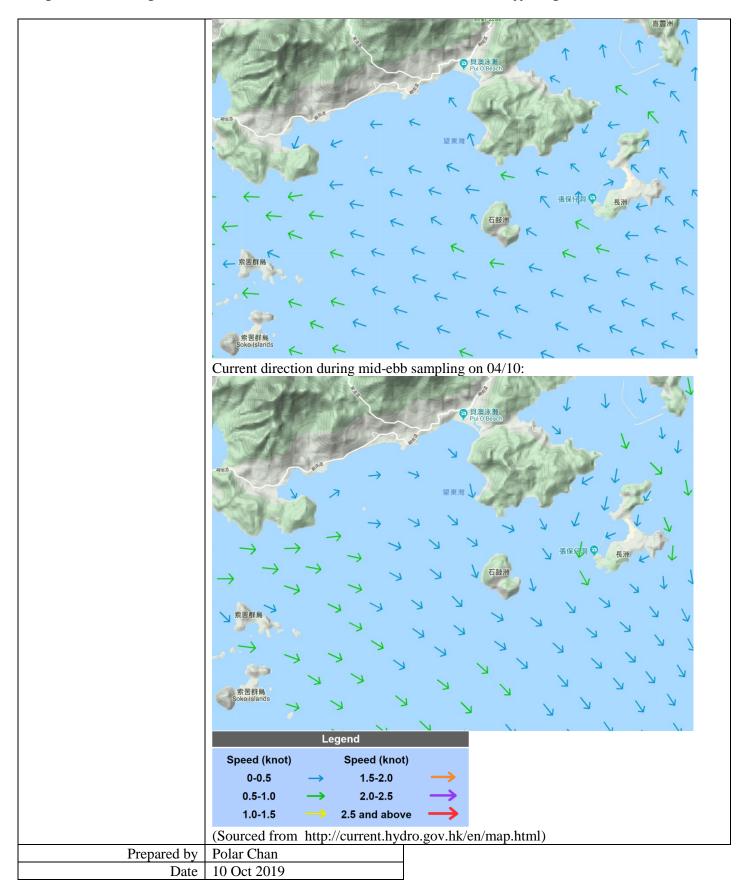

Project	Integrated Waste Management Facilities, Phase 1				
Date	04 October 2019				
Time	09:17 – 12:47 (Mid-Flood)				
	14:48 – 18:18 (Mid-Ebb)				
	Mid-Fl	lood			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B1	PROPOSED OUTFALL + 4 PROPOSED SUBMARINE C. PROPOSED RECLAIME FOR THE IMME	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Dissolved Overson (DO)				
Action & Limit Levels	Dissolved Oxygen (DO) Action Level		Limit Level		
Action & Limit Levels					
Measurement Level	\leq 7.13 mg/L Impact Station(s) with	Control Stati	$\leq 4.00 \text{ mg/L}$	Impact Station(a) without	
Weasurement Level	Exceedance	Control Stati	IOIIS	Impact Station(s) without Exceedance	
	6.42 mg/L (B1)	6.50 mg/L (0	71.4.)	Exceedance	
	6.53 mg/L (B2)	6.55 mg/L (0	*		
	6.49 mg/L (B3)	0.33 mg/L (C	2A)		
	6.69 mg/L (B4)				
	6.85 mg/L (F1A)				
	6.80 mg/L (H1)				
	6.47 mg/L (M1)				
	6.51 mg/L (CR1)				
	6.53 mg/L (CR2)				
	6.60 mg/L (S1)				
	6.86 mg/L (S2A)				
	6.71 mg/L (S3)		. (611.0		
Possible reason for Action or	All monitoring stations inclu	-			
Limit Level Non-compliance	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.				
	By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded that exceedance of Action level of DO at all monitoring stations are related to				


	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb				
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
Monitoring Location	B1, B2, B3, B4, CIA, C2A, 1 + B1 C1 C1 C1A	ROPOSED OUTFALL + A PROPOSED 12/K/V SUBMARINE CABLES B3 B3 B CR7 CR7 CR7 CR7 CR7 CR7 CR7	F1 F1A N F1 F1A N Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION		
		PROPOSED RECLAIMED AREA-FOR THE IMMIF	PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Parameter	Dissolved Oxygen (DO)				
Action & Limit Levels	Action Level	Limit Level			
	\leq 7.13 mg/L	\leq 4.00 mg/L			
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without		
	Exceedance	(51 // (61 A)	Exceedance		
	6.62 mg/L (B1)	6.51 mg/L (C1A)			
	6.65 mg/L (B2) 6.49 mg/L (B3)	6.64 mg/L (C2A)			
	6.30 mg/L (B4)				
	6.38 mg/L (F1A)				
	6.49 mg/L (H1)				
	6.39 mg/L (M1)				
	6.39 mg/L (CR1)				
	6.52 mg/L (CR2)				
	6.65 mg/L (S1)				
	6.40 mg/L (S2A)				
	6.49 mg/L (S3)				
Possible reason for Action or	•	ding control stations (C1A &			
Limit Level Non-compliance	occurred in the Project in Oc	n of drop of DO level at all m tober 2018.	omtoring stations has		
	By reviewing the available d	ata from EPD, the DO level o	f marine water monitoring		
		ctober 2016 & October 2017			
	(7.13 mg/L) during dry seaso	on. Considering the absence of	f distinct low DO at the		
	_	oject Site and plausible seaso			
		vel of DO at all monitoring sta			
		ons and deemed to be unrelate			
Actions taken / to be taken		al performance of the Project			
		ontractor is reminded to imple	ement all applicable		
Damanta	mitigation measures as per the				
Remarks	Supporting figures of the EP	D water data:			

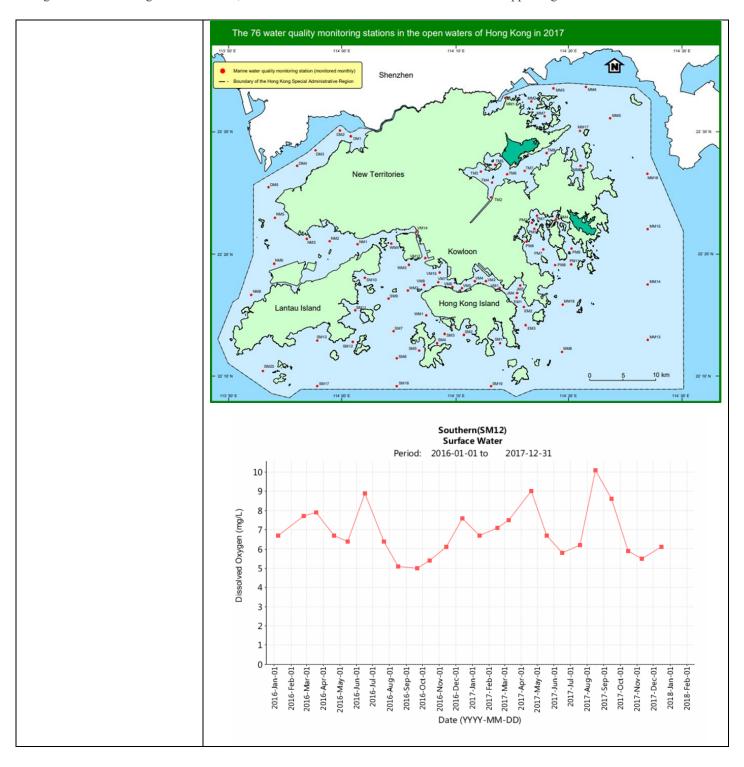

Project	Integrated Waste Management Facilities, Phase 1					
Date	04 Oct 2019 (Lab result received on 09 Oct 2019)					
Time	09:17 – 12:47 (Mid-Flood)					
	14:48 – 18:18 (Mid-Ebb)	14:48 – 18:18 (Mid-Ebb)				
	Mid-Fl	lood				
Monitoring Location	B4 & CR1					
	+ B1 • S1-	PROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARINE CABLES \$2 PROPOSED RECLAIMED ARE FOR THE IMME	H1 HEK KWU CHAU CR2 S3 CR1	F1 F1A N Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Parameter	Suspended Solid (SS)					
Action & Limit Levels	Action Level	T T	Limit Level			
rection & Ellint Ecvels	$\geq 8.0 \text{ mg/L}$		≥ 10.0 mg/L			
Measurement Level	Impact Station(s) of	Control Station		Impact Station(s) without		
Tricusarement Level	Exceedance	Control Station		Exceedance		
	8.0 mg/L (B4)	7.7 mg/L (C1A	()	6.5 mg/L (B1)		
	9.3 mg/L (CR1)	5.3 mg/L (C2A		6.3 mg/L (B2)		
		0.0 1118/2 (021)	-/	6.3 mg/L (B3)		
				6.3 mg/L (F1A)		
				7.2 mg/L (H1)		
				5.7 mg/L (M1)		
				6.2 mg/L (CR2)		
				6.0 mg/L (S1)		
				6.0 mg/L (S2A)		
				6.7 mg/L (S3)		
Possible reason for Action or	Works scheduled on site on (04/10 include De	CM main work			
Limit Level Non-compliance						
	DCM main works, cone penetration test, levelling the sand blanket, rock filling work flattening the formation of caisson seawall and laying geotextiles at reclamation area					
			,,			
	Dominating sea current direction was found to be from Southeast to N waters around Shek Kwu Chau.					
	B4 is located at unrelated saway) to the works location unrelated to the Project.		_			

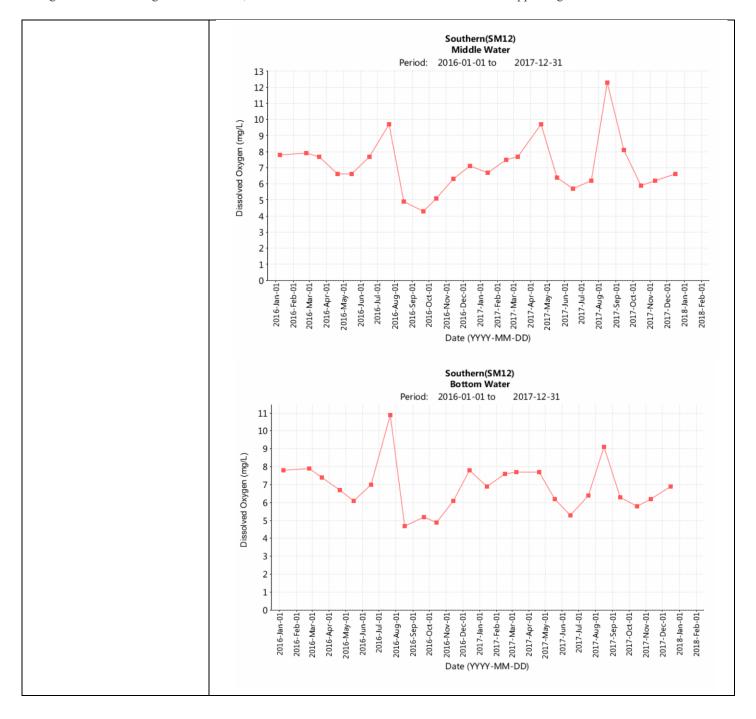
CR1 is located upstream to the Project site while the silt curtain checking was implemented on ESC-61 (07:15), ESC-62 (07:00), GD-851 (09:30), 同富 18 (13:30), 宏建 1 (07:45) and Cheung Kee No.10 (08:30) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket levelling works scheduled in GD-853 & DL4 was carried out with refer to the site diary on that day. As confirmed by the Contractor, UDL-2 was used to store slag materials.

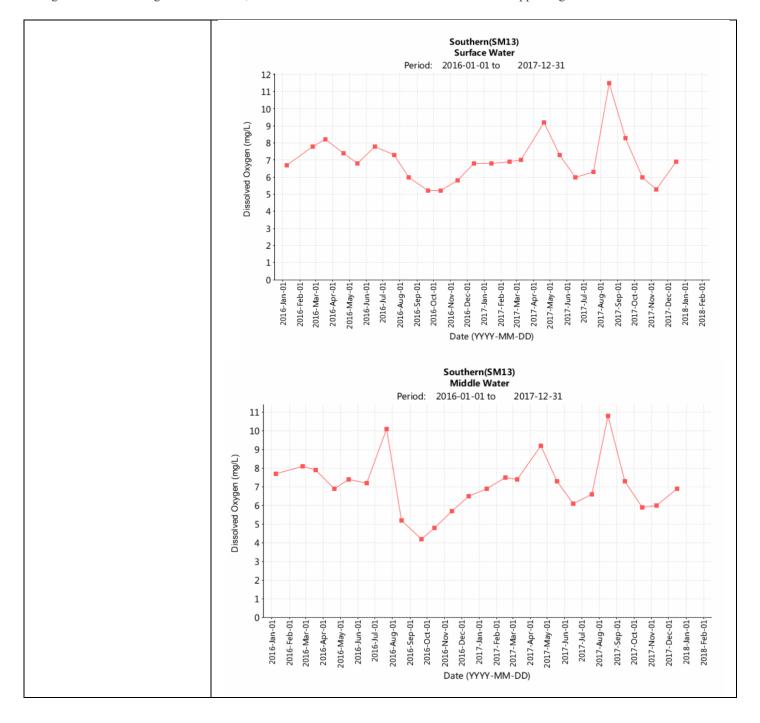
From MMO monitoring records on 04/10, MMO teams were arranged for six derrick barges (GD-853, GD-851, UDL-2, 宏建 1, 宏建 2 & DL4) and two DCM barges (ESC-61 & ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. According to the site document provided by the Contractor, no works record of 宏建 2 was stated in the site diary on that day. 同富 18 & Cheung Kee No.10 were was observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.

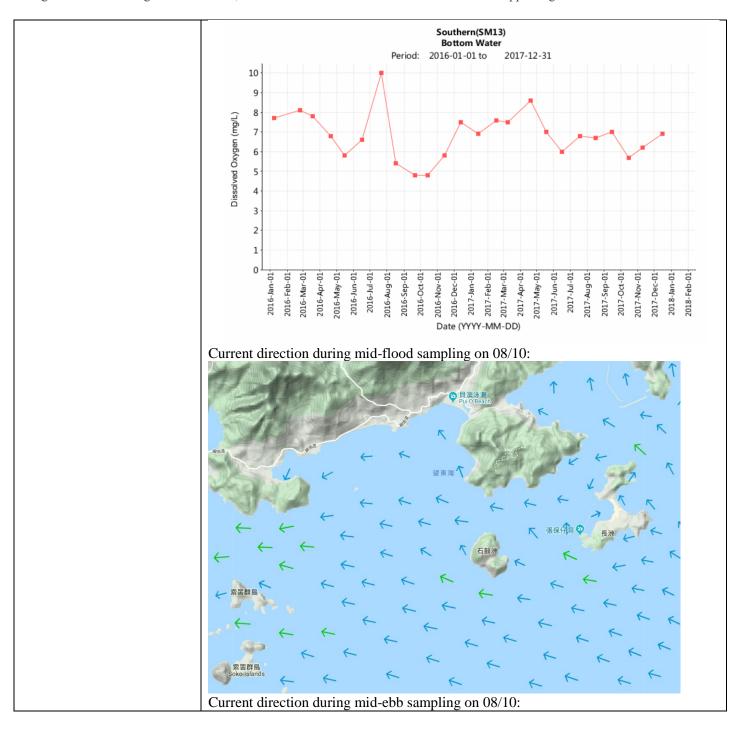

According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. It might suggest that the SS exceedance at CR1 is deemed to be unrelated to the Project.

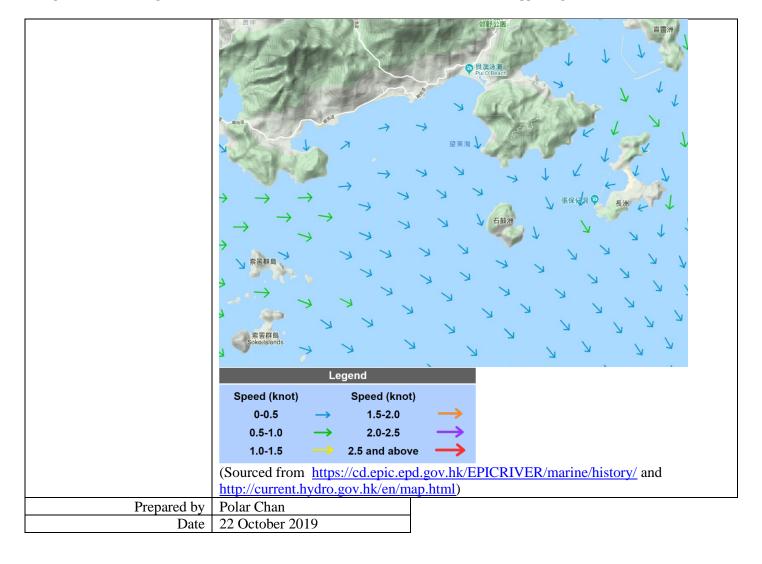
Site tidiness in the present barges in the Project site were checked during weekly site inspection on 02/10, where some sediments was observed around the edge of the cage of silt curtain on Kam Ying 8. However, according to the rationale in previous paragraphs, this observation might not contribute to the increase of the suspended solids recorded.

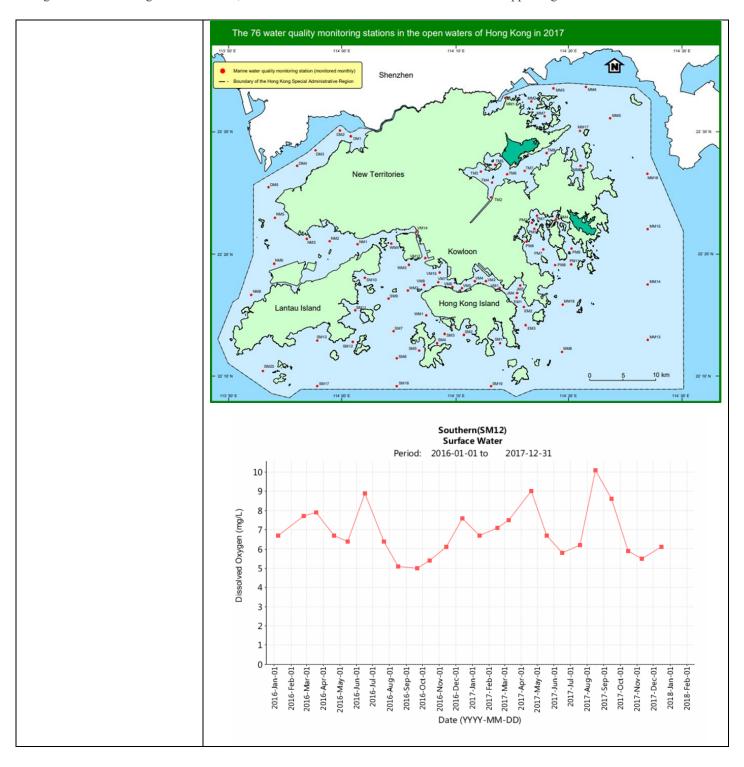

Page 2 of 4

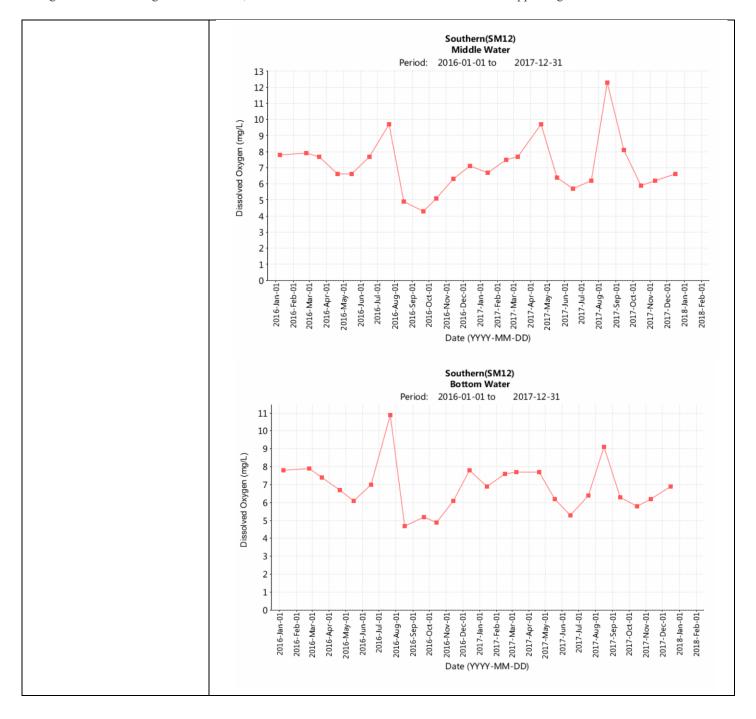

	T	T	T			
	8.2 mg/L (CR1)		6.3 mg/L (B4)			
	13.5 mg/L (CR2)		6.5 mg/L (F1A)			
	8.3 mg/L (S3)		6.0 mg/L (H1)			
			6.3 mg/L (S1)			
D 111 C 1 1	***		7.0 mg/L (S2A)			
Possible reason for Action or		04/10 include DCM main wor				
Limit Level Non-compliance		etration test, levelling the sand iisson seawall and laying geoto				
	Dominating sea current dire waters around Shek Kwu Cha	ection was found to be from au.	Northwest to Southeast at			
		elated stream direction (neither tion, exceedances of these mon	•			
	CR1 is located downstream, CR2 & S3 are located close to the works location in Project site while the silt curtain checking was implemented on ESC-61 (07:15), E 62 (07:00), GD-851 (09:30), 同富 18 (13:30), 宏建 1 (07:45) and Cheung Kee No (08:30) by the Contractor and checking results showed that no deficiency of curtain was found on that day. No sand blanket levelling works scheduled in GD-& DL4 was carried out with refer to the site diary on that day. As confirmed by Contractor, UDL-2 was used to store slag materials.					
	From MMO monitoring records on 04/10, MMO teams were arranged barges (GD-853, GD-851, UDL-2, 宏建 1, 宏建 2 & DL4) and two (ESC-61 & ESC-62) on that day while no deficiency of silt curtain was the commencement of and during construction activity. According document provided by the Contractor, no works record of 宏建 2 was so diary on that day. 同富 18 & Cheung Kee No.10 were was observed (no site deficiency and no potential source of SS) by the MMO at lookod According to the field observation by sampling team & Marine Marteam during sampling event, no silt plume was observed in the Project suggest that the SS exceedance at CR1, CR2 & S3 are deemed to be a Project.					
	inspection on 02/10, where s of silt curtain on Kam Yir	arges in the Project site were ome sediments was observed ng 8. However, according to might not contribute to the	around the edge of the cage of the rationale in previous			
Actions taken / to be taken		e edge of the silt curtain has be	een cleaned on 5 October.			
		d to clean it regularly to preve				
	Examination of environment	al performance of the Project	will be continued during the			
		ontractor is reminded to imple				
	* *	•	ment an applicable			
D 1	mitigation measures as per th	•				
Remarks	Current direction during mid-	-tlood sampling on 04/10:				

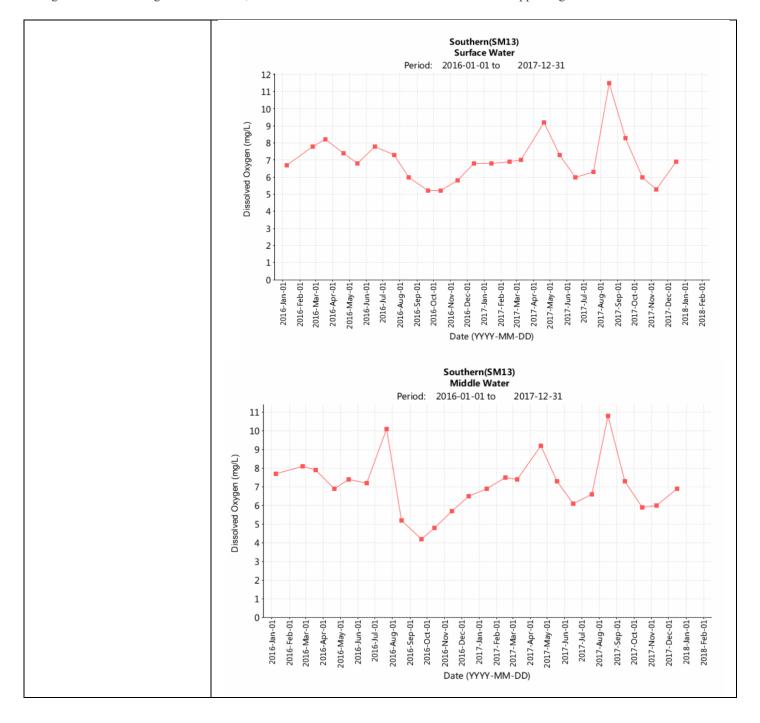


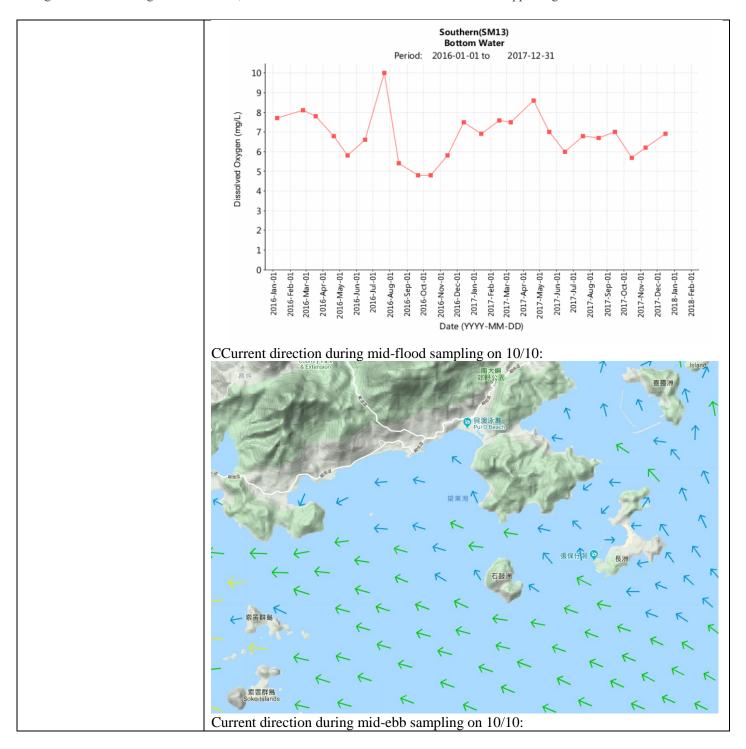

Project	Integrated Waste Management Facilities, Phase 1				
Date	08 October 2019				
Time	14:52 – 18:22 (Mid-Flood)				
	08:00 – 12:25 (Mid-Ebb)				
	Mid-Fl	lood			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B1	PROPOSED OUTFALL + 4 PROPOSED SUBMARINE C. PROPOSED RECLAIME FOR THE IMME	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Donomoton	Disselved Owner (DO)				
Parameter Action & Limit Levels	Dissolved Oxygen (DO) Action Level		Limit Level		
Action & Limit Levels					
Measurement Level	\leq 7.13 mg/L Impact Station(s) with	Control Stati	$\leq 4.00 \text{ mg/L}$	Impact Station(s) without	
Weasurement Level	Exceedance	Control Stati	ions	Exceedance	
	6.43 mg/L (B1)	6.34 mg/L (0	71 ()	Excedimee	
	6.18 mg/L (B2)	6.21 mg/L (0	*		
	6.30 mg/L (B3)	0.21 mg/L (C	J2A)		
	6.37 mg/L (B4)				
	6.41 mg/L (F1A)				
	6.13 mg/L (H1)				
	6.13 mg/L (M1)				
	6.26 mg/L (CR1)				
	6.35 mg/L (CR2)				
	6.24 mg/L (S1)				
	6.30 mg/L (S2A)				
D 311	6.21 mg/L (S3)	1 1 .	· (C1 A 0		
Possible reason for Action or	All monitoring stations inclu	-			
Limit Level Non-compliance	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.				
	By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded that exceedance of Action level of DO at all monitoring stations are related to				

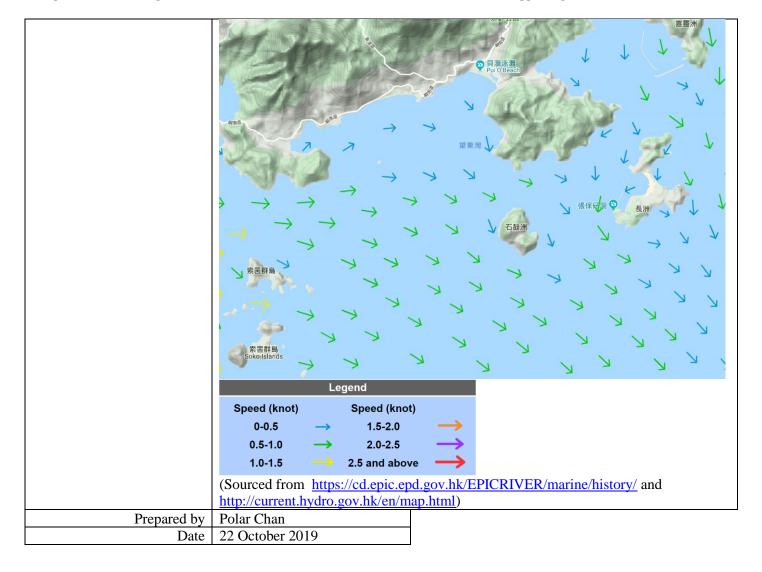

	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb				
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
Monitoring Location	B1, B2, B3, B4, CIA, C2A, + B1 C1 C1	ROPOSED CUITALL + A PROPOSED 132KV SUBMARINE CABLES B3 B3 B4 B3 B3 B4 B3 B3 B4 B3 B3	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION		
		PROPOSED RECLAIMED AREA-FOR THE IMMIF	PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Parameter	Dissolved Oxygen (DO)				
Action & Limit Levels	Action Level	Limit Level			
	\leq 7.13 mg/L	\leq 4.00 mg/L			
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without		
	Exceedance		Exceedance		
	6.27 mg/L (B1)	6.13 mg/L (C1A)			
	6.18 mg/L (B2)	6.16 mg/L (C2A)			
	6.26 mg/L (B3) 6.20 mg/L (B4)				
	6.21 mg/L (F1A)				
	6.33 mg/L (H1)				
	6.25 mg/L (M1)				
	6.26 mg/L (CR1)				
	6.07 mg/L (CR2)				
	6.12 mg/L (S1)				
	6.16 mg/L (S2A)				
	6.33 mg/L (S3)				
Possible reason for Action or	•	ding control stations (C1A &			
Limit Level Non-compliance	similar DO level. This patter occurred in the Project in Oc	n of drop of DO level at all m tober 2018.	onitoring stations has		
		ata from EPD, the DO level of			
		ctober 2016 & October 2017			
		on. Considering the absence or oject Site and plausible season			
	_	vel of DO at all monitoring st			
		ons and deemed to be unrelated			
Actions taken / to be taken		al performance of the Project			
		Contractor is reminded to impl			
	mitigation measures as per th	ne Updated EM&A Manual.			
Remarks	Supporting figures of the EP	D water data:			

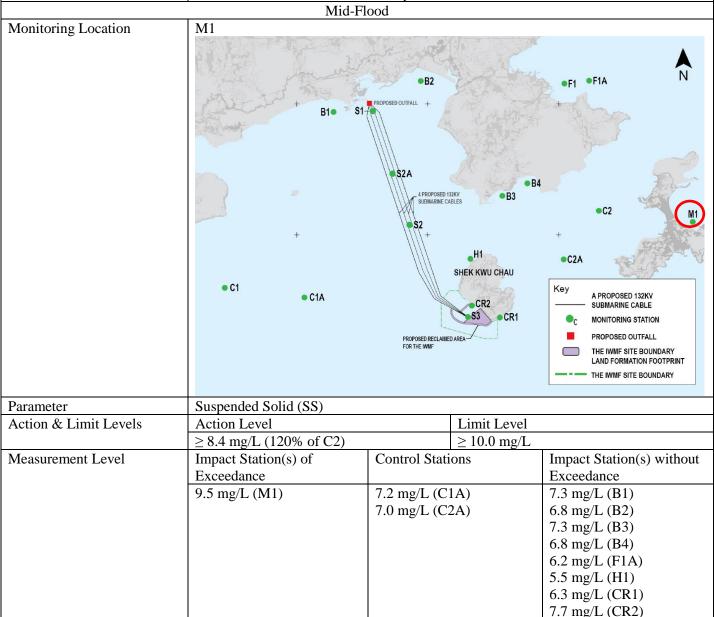




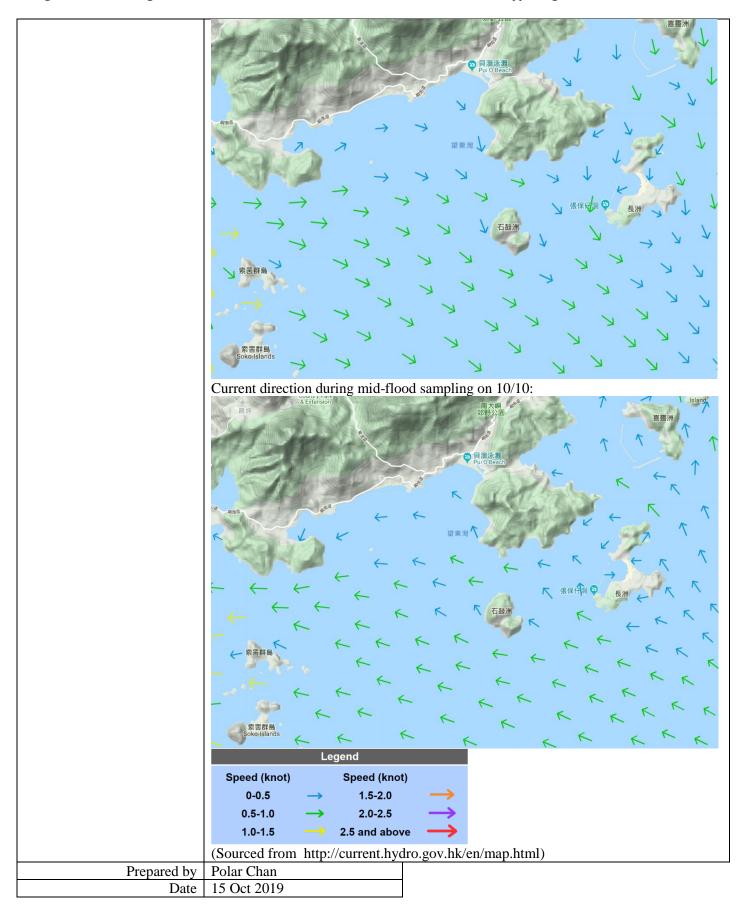



Project	Integrated Waste Management Facilities, Phase 1				
Date	10 October 2019				
Time	14:21 – 19:00 (Mid-Flood)				
	08:35 – 12:05 (Mid-Ebb)				
	Mid-Fl	lood			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B1	PROPOSED OUTFALL + 4 PROPOSED SUBMARINE CL 932 PROPOSED RECLAIME FOR THE IMAMF	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Donomoton	Disselved Owner (DO)				
Parameter Action & Limit Levels	Dissolved Oxygen (DO) Action Level		Limit Level		
Action & Limit Levels					
Measurement Level	\leq 7.13 mg/L Impact Station(s) with	Control Stati	$\leq 4.00 \text{ mg/L}$	Impact Station(a) without	
Weasurement Level	Exceedance	Control Stati	IOIIS	Impact Station(s) without Exceedance	
	6.55 mg/L (B1)	6.45 mg/L (0	71.4.)	Exceedance	
	6.54 mg/L (B2)	6.63 mg/L (0	*		
	6.32 mg/L (B3)	0.03 mg/L (C	2A)		
	6.50 mg/L (B4)				
	6.37 mg/L (F1A)				
	6.30 mg/L (H1)				
	6.41 mg/L (M1)				
	6.72 mg/L (CR1)				
	6.52 mg/L (CR2)				
	6.39 mg/L (S1)				
	6.36 mg/L (S2A)				
	6.60 mg/L (S3)		. (611.0		
Possible reason for Action or	All monitoring stations inclu	-			
Limit Level Non-compliance	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.				
	By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded that exceedance of Action level of DO at all monitoring stations are related to				


	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb				
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
Monitoring Location	B1, B2, B3, B4, CIA, C2A, 1 + B1 C1 C1 C1A	B2 APROPOSED 13/KV SUBMARINE CABLES B3 B3 B4 B3 B4 B4 B3 B4 B4 B4	F1 F1A N F1 F1A N Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION		
		PROPOSED RECLAIMED AREA-FOR THE IMMF	PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Parameter	Dissolved Oxygen (DO)				
Action & Limit Levels	Action Level	Limit Level			
	\leq 7.13 mg/L	\leq 4.00 mg/L			
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without		
	Exceedance		Exceedance		
	6.55 mg/L (B1)	6.54 mg/L (C1A)			
	6.32 mg/L (B2)	6.51 mg/L (C2A)			
	6.15 mg/L (B3) 6.21 mg/L (B4)				
	6.49 mg/L (F1A)				
	6.21 mg/L (H1)				
	6.37 mg/L (M1)				
	6.40 mg/L (CR1)				
	6.39 mg/L (CR2)				
	6.57 mg/L (S1)				
	6.43 mg/L (S2A)				
	6.29 mg/L (S3)				
Possible reason for Action or	•	ding control stations (C1A &			
Limit Level Non-compliance	similar DO level. This pattern occurred in the Project in Oc	n of drop of DO level at all m	onitoring stations has		
	occurred in the Project in Sc	10001 2010.			
	By reviewing the available d	ata from EPD, the DO level o	f marine water monitoring		
		ctober 2016 & October 2017			
	(7.13 mg/L) during dry seaso	on. Considering the absence of	f distinct low DO at the		
	_	roject Site and plausible seaso			
		vel of DO at all monitoring sta			
		ons and deemed to be unrelate			
Actions taken / to be taken		al performance of the Project			
		ontractor is reminded to imple	ement all applicable		
Remarks	mitigation measures as per the				
INCHIIAI KS	Supporting figures of the EP	D water data.			

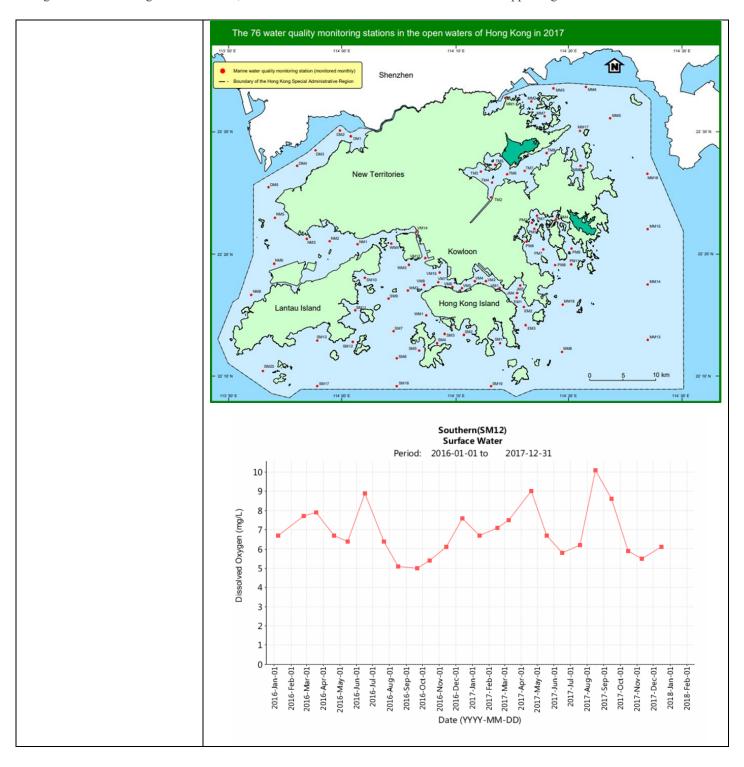

Project	Integrated Waste Management Facilities, Phase 1				
Date	10 Oct 2019 (Lab result received on 14 Oct 2019)				
Time	08:35 – 12:05 (Mid-Ebb)				
	14:21 – 19:00 (Mid-Flood)				
	Mid-E				
Monitoring Location	F1A, M1, CR1, S1, S2A & S	3			
	B1 S1 PROPOSED OUTFALL + B1 S1 PROPOSED 132KV SUBMARINE CABLE SCR2 CR1 PROPOSED BECLAMED AREA FOR THE WARF FOR THE WARF B2 PF1 F1A N C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY				
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
	\geq 9.4 mg/L (120% of C1)		\geq 10.2 mg/L (130% of C1)	
Measurement Level	Impact Station(s) of	Control Stati		Impact Station(s) without	
	Exceedance			Exceedance	
	9.5 mg/L (F1A)	7.8 mg/L (C1	IA)	9.0 mg/L (B1)	
	11.3 mg/L (M1)	7.3 mg/L (C2	2A)	8.8 mg/L (B2)	
	10.2 mg/L (CR1)			8.0 mg/L (B3)	
	11.0 mg/L (S1)			5.8 mg/L (B4)	
	16.0 mg/L (S2A)			7.7 mg/L (H1)	
	13.3 mg/L (S3)			9.3 mg/L (CR2)	
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 10/10 include DCM main works, DCM sample coring for DCM main works, cone penetration works, levelling the sand blanket, rock filling works, flattening the formation of caisson seawall and laying geotextiles at reclamation area.				
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.				
	F1A, M1, S1 & S2A are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project.				
	CR1 and S3 are located clocurtain checking was imple (07:00), 宏建 2 (07:00), 港前	mented on ES	SC-61 (18:30),	GD-851 (13:00), 同富 18	

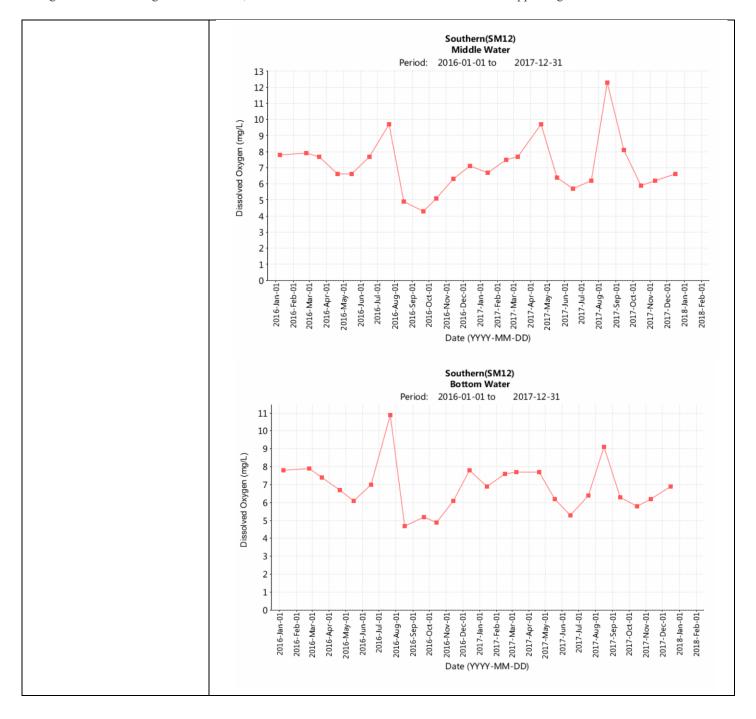
(10:30) & GD-853 (13:55) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No DCM main works scheduled in ESC-62 was carried out with refer to site diary on that day.

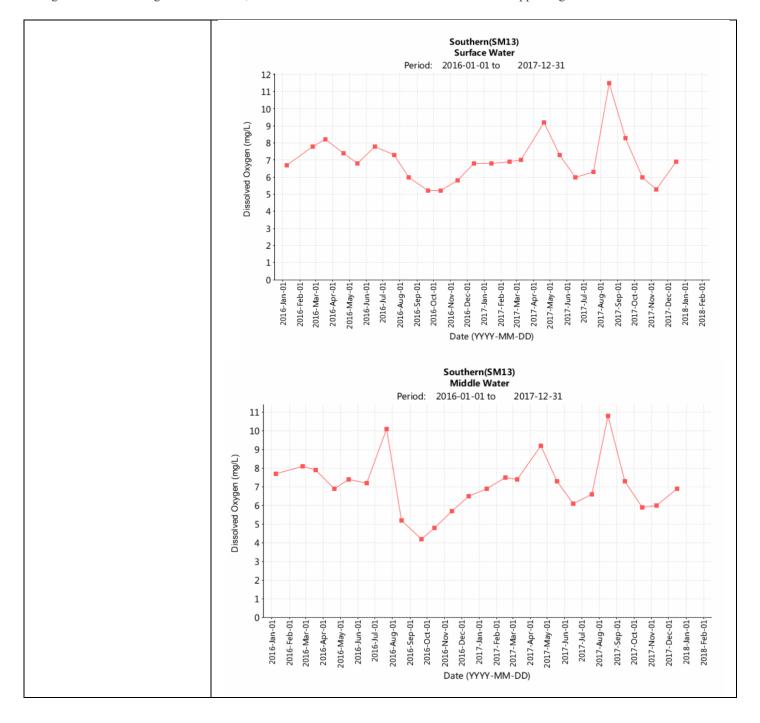

From MMO monitoring records on 10/10, MMO teams were arranged for one DCM barge (ESC-61) and five derrick barges (同富 18, GD-851, GD-853, 宏建 2 & Cheung Kee No.10) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. 港龍 108 & Kam Ying 8 were observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.

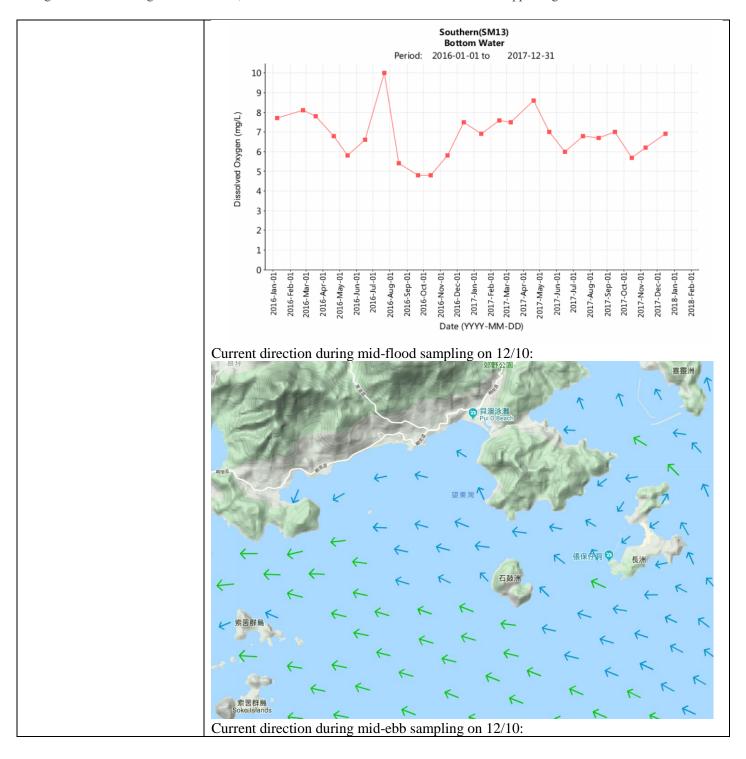
According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. It might suggest that the SS exceedance at F1A, M1, CR1, S1, S2A & S3 are deemed to be unrelated to the Project.

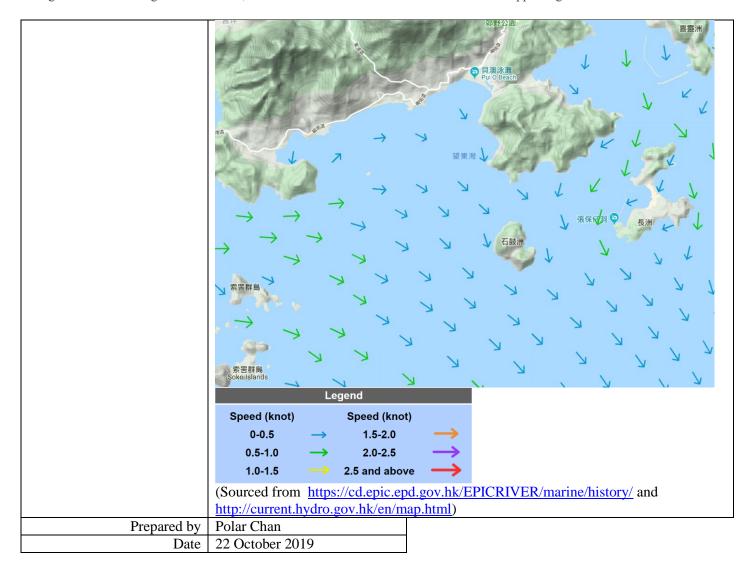
Site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.

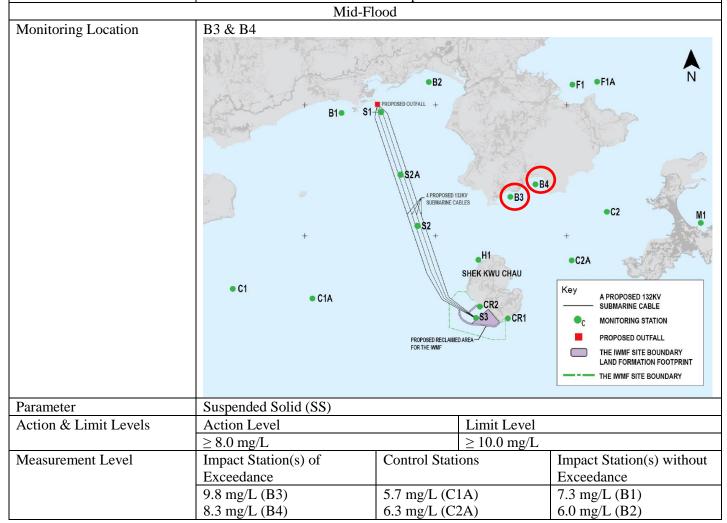



	7.8 mg/L (S1)
	7.3 mg/L (S2A)
<u> </u>	7.7 mg/L (S3)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 10/10 include DCM main works, DCM sample coring for DCM main works, cone penetration works, levelling the sand blanket, rock filling works, flattening the formation of caisson seawall and laying geotextiles at reclamation area.
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.
	M1 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring station is deemed to be unrelated to the Project.
	Silt curtain checking was implemented on ESC-61 (18:30), GD-851 (13:00), 同富 18 (07:00), 宏建 2 (07:00), 港龍 108 (13:15), Kam Ying 8 (08:30), Cheung Kee No. 10 (10:30) & GD-853 (13:55) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No DCM main works scheduled in ESC-62 was carried out with refer to site diary on that day.
	From MMO monitoring records on 10/10, MMO teams were arranged for one DCM barge (ESC-61) and five derrick barges (同富 18, GD-851, GD-853, 宏建 2 & Cheung Kee No.10) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. 港龍 108 & Kam Ying 8 were observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.
	According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the
	weekly inspection, and the Contractor is reminded to implement all applicable
	mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-ebb sampling on 10/10:



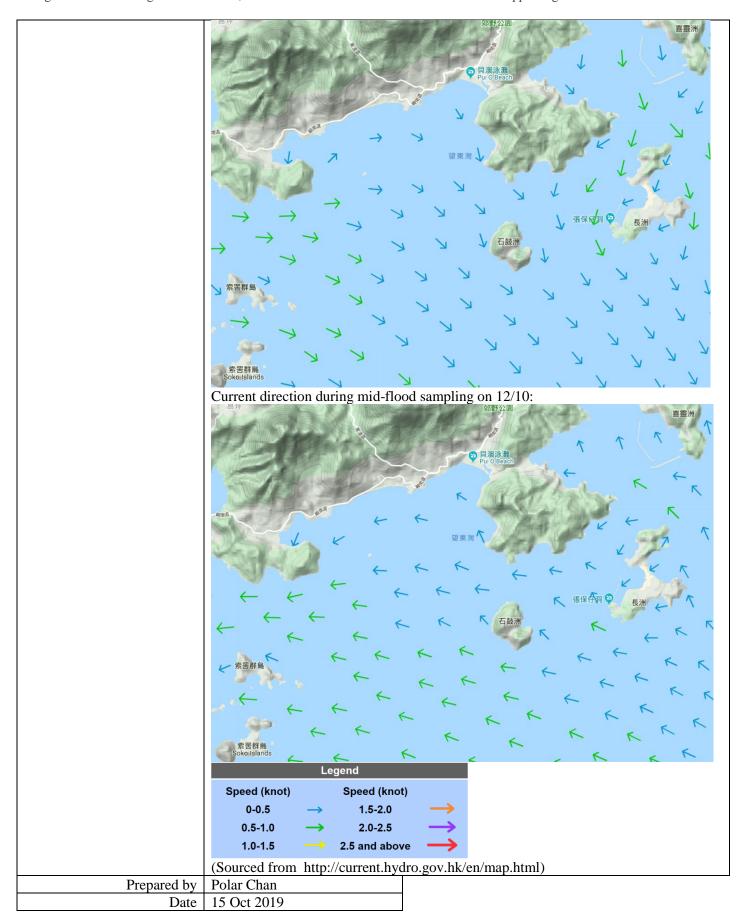

Project	Integrated Waste Management Facilities, Phase 1				
Date	12 October 2019				
Time	15:08 – 19:00 (Mid-Flood)				
	09:47 – 13:17 (Mid-Ebb)				
	Mid-Fl	lood			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B1	PROPOSED OUTFALL + 4 PROPOSED SUBMARINE C. PROPOSED RECLAIME FOR THE IMME	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE WMF SITE BOUNDARY	
Donomoton	Disselved Owner (DO)				
Parameter Action & Limit Levels	Dissolved Oxygen (DO) Action Level		Limit Level		
Action & Limit Levels					
Measurement Level	\leq 7.13 mg/L Impact Station(s) with	Control Stati	$\leq 4.00 \text{ mg/L}$	Impact Station(s) without	
Weasurement Level	Exceedance	Control Stati	10118	Impact Station(s) without Exceedance	
	6.36 mg/L (B1)	6.42 mg/L (0	71.4.)	Exceedance	
	6.49 mg/L (B2)	6.43 mg/L (6	,		
	6.67 mg/L (B2)	0.43 mg/L (C	2 A)		
	6.48 mg/L (B4)				
	6.40 mg/L (F1A)				
	6.41 mg/L (H1)				
	6.39 mg/L (M1)				
	6.47 mg/L (CR1)				
	6.43 mg/L (CR2)				
	6.52 mg/L (S1)				
	6.31 mg/L (S2A)				
	6.44 mg/L (S3)		. (21.1.0		
Possible reason for Action or	All monitoring stations inclu	-			
Limit Level Non-compliance	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.				
	By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded that exceedance of Action level of DO at all monitoring stations are related to				


	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb		
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3		
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S B2 + B1 S1 ROPOSED DUIFALL 4 PROPOSED 132NV SUBMARNE CABLES + H1 SHER RWU CHAU C1 C1A CR2 CR2 CR2		F1 F1A N F1 F1A N Key A PROPOSED 132KV SUBMARINE CABLE
		PROPOSED RECLAIMED AREA-FOR THE IMMIF	C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Dissolved Oxygen (DO)		
Action & Limit Levels	Action Level	Limit Level	
	\leq 7.13 mg/L	\leq 4.00 mg/L	
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without
Possible reason for Action or	Exceedance 6.33 mg/L (B1) 6.23 mg/L (B2) 6.22 mg/L (B3) 6.35 mg/L (B4) 6.30 mg/L (F1A) 6.35 mg/L (M1) 6.35 mg/L (CR1) 6.27 mg/L (CR2) 6.38 mg/L (S1) 6.27 mg/L (S2A) 6.37 mg/L (S3) All monitoring stations include	6.24 mg/L (C1A) 6.30 mg/L (C2A) ding control stations (C1A &	Exceedance C2A) exhibited low and
Limit Level Non-compliance	occurred in the Project in October 2018. By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded that exceedance of Action level of DO at all monitoring stations are related to surrounding weather conditions and deemed to be unrelated to the Project.		
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.		
Remarks	Supporting figures of the EPD water data:		

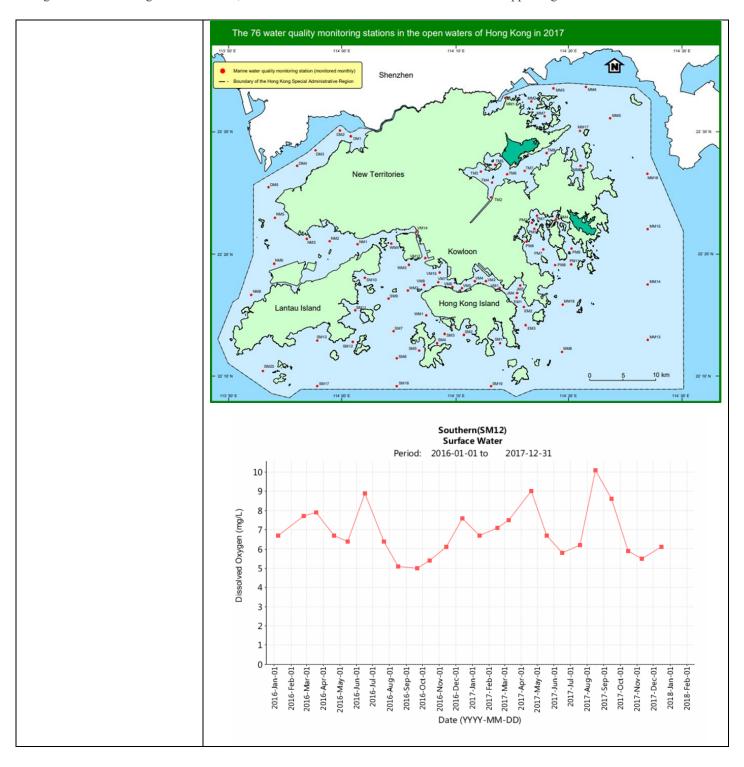

Project	Integrated Waste Management Facilities, Phase 1			
Date	12 Oct 2019 (Lab result recei	ved on 16 Oct 2019)		
Time	09:47 – 13:17 (Mid-Ebb)			
	15:08 – 19:00 (Mid-Flood)			
	Mid-E	Ebb		
Monitoring Location	B3, B4, F1A, M1 & S1			
	+ B1 • C1A	B2 OPOSED OUTFALL + A PROPOSED 132KV SUBMARINE CABLES S2 + H1 SHEK KWU CHAU CR2 S3 CR1 PROPOSED RECLAIMED AREA FOR THE IMMIF	Rey A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Leve	21	
Action & Limit Levels				
N/ / Y 1	\geq 9.4 mg/L (120% of C1)		/L (130% of C1)	
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance	7.9 / (C1.4.)	Exceedance	
	9.5 mg/L (B3)	7.8 mg/L (C1A)	7.5 mg/L (B1)	
	11.0 mg/L (B4)	6.2 mg/L (C2A)	6.5 mg/L (B2)	
	9.8 mg/L (F1A)		9.0 mg/L (H1)	
	11.8 mg/L (M1)		8.3 mg/L (CR1)	
	10.8 mg/L (S1)		8.7 mg/L (CR2)	
			7.3 mg/L (S2A)	
			7.3 mg/L (S3)	
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 12/10 include DCM main works, DCM sample coring to			
	(13:31), GD-851 (09:30) & 3	港龍 108 (09:40) by the (1:15), UDL-2 (10:30), ESC-61 Contractor and checking results that day. No rock filling works	

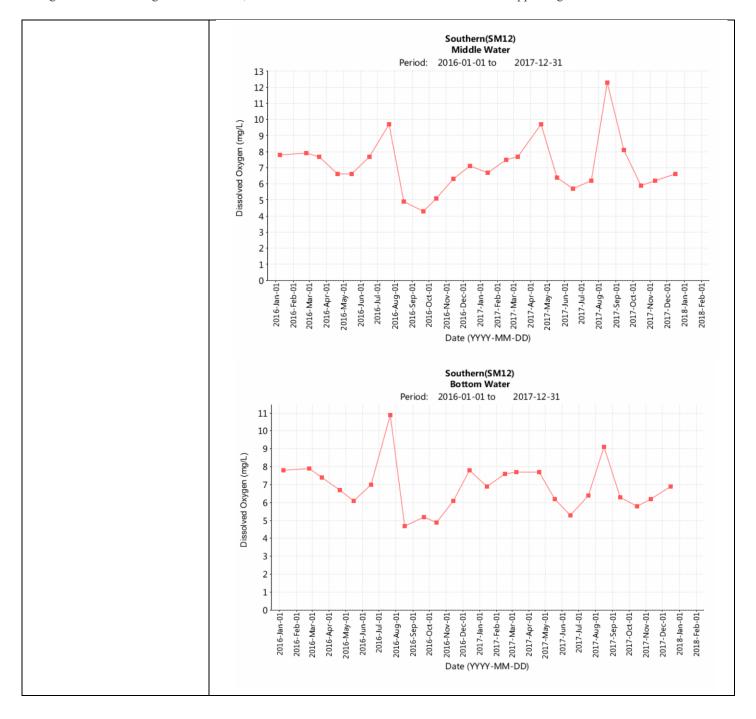
scheduled in Cheung Kee No.10 was carried out with refer to the site diary on that day. As confirmed by the Contractor, only materials transhipment was conducted in \mathbb{Z} 建 2 and no silt curtain was required. According to the site document provided by the Contractor, no works record of \mathbb{Z} 建 1 was stated in the site diary on that day.

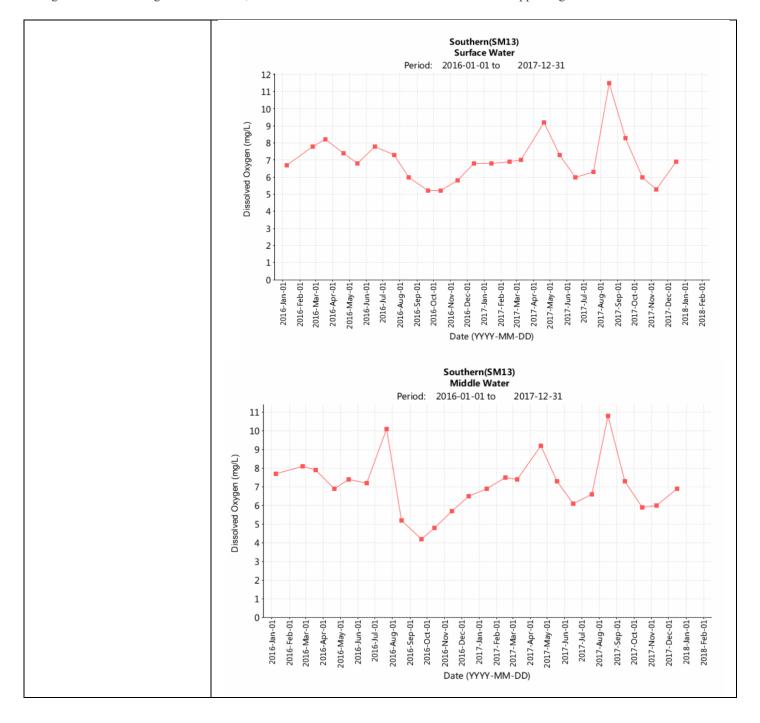
From MMO monitoring records on 12/10, MMO teams were arranged for seven derrick barges (GD-853, GD-851, 同富 18, 港龍 108, 宏建 1, 宏建 2 & Cheung Kee No.10) and one DCM barge (ESC-61) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. UDL-2 was observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.

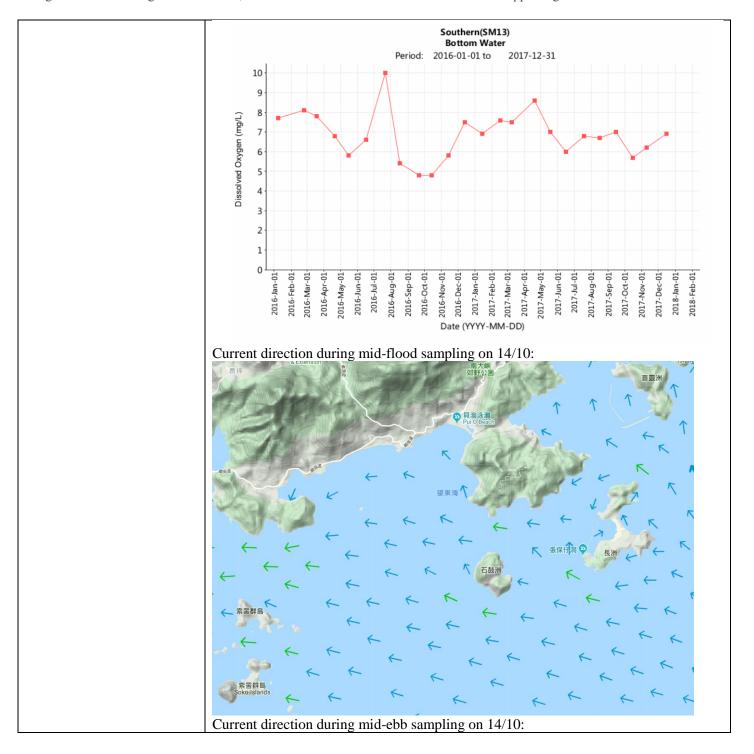

According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site. Per the field observation by MMO on 12 Oct 2019, observation of silt plume and foam at close proximity of the outside of silt curtains of ESC 61 were found at 13:30 & 15:00 respectively. The silt plume and foam were disappeared within 30 minutes upon discovery and before the sampling event. Malpractice of 同富 18 dumping sand material above water, instead of bottom of the sea as agreed in the Silt Curtain Deployment Plan, was observed by MMO at 17:00, where Contractor has ceased the malpractice immediately and no silt plume was observed at the working area.

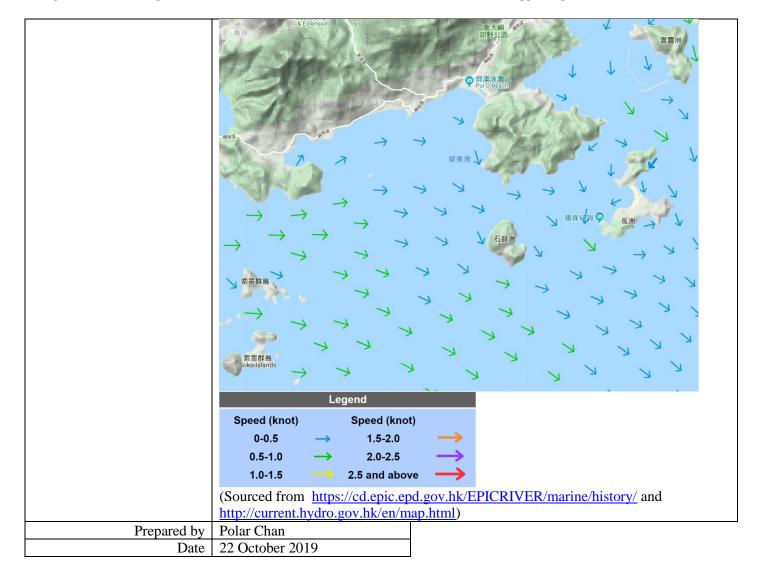
Site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.

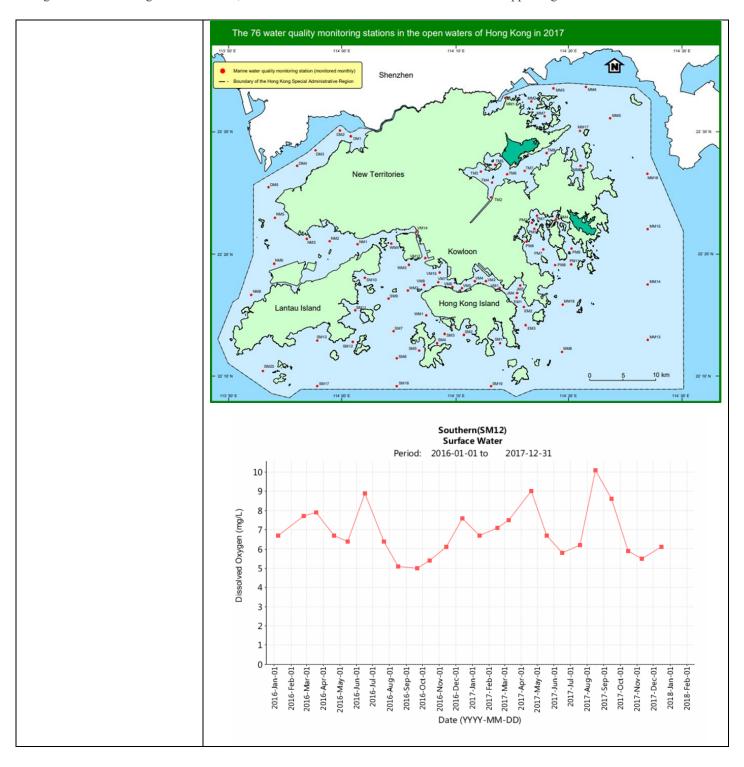

Page 2 of 4

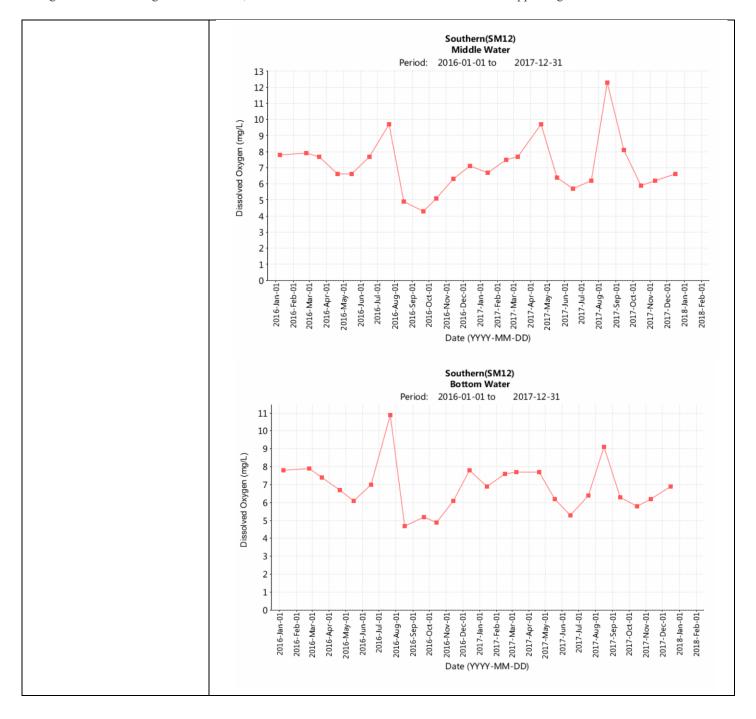

	6.7 mg/L (F1A)				
	7.7 mg/L (H1)				
	7.0 mg/L (M1)				
	6.2 mg/L (CR1)				
	5.7 mg/L (CR2)				
	5.5 mg/L (S1)				
	4.7 mg/L (S2A)				
	5.2 mg/L (S3)				
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 12/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, rock filling works, flattening the formation of caisson seawall and laying geotextiles at reclamation area.				
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.				
	B3 & B4 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project.				
	Silt curtain checking was implemented on 同富 18 (11:15), UDL-2 (10:30), ESC-61 (13:31), GD-851 (09:30) & 港龍 108 (09:40) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No rock filling works scheduled in Cheung Kee No.10 was carried out with refer to the site diary on that day. As confirmed by the Contractor, only materials transhipment was conducted in 宏建 2 and no silt curtain was required. According to the site document provided by the Contractor, no works record of 宏建 1 was stated in the site diary on that day.				
	From MMO monitoring records on 12/10, MMO teams were arranged for seven derrick barges (GD-853, GD-851, 同富 18, 港龍 108, 宏建 1, 宏建 2 & Cheung Kee No.10) and one DCM barge (ESC-61) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. UDL-2 was observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.				
	According to the field observation by sampling team during sampling event, no silt plume was observed in the Project site. Per the field observation by MMO on 12 Oct 2019, observation of silt plume and foam at close proximity of the outside of silt curtains of ESC 61 were found at 13:30 & 15:00 respectively. The silt plume and foam were disappeared within 30 minutes upon discovery and before the sampling event. Malpractice of 同富 18 dumping sand material above water, instead of bottom of the sea as agreed in the Silt Curtain Deployment Plan, was observed by MMO at 17:00, where Contractor has ceased the malpractice immediately and no silt plume was observed at the working area.				
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the				
	weekly inspection, and the Contractor is reminded to implement all applicable				
	mitigation measures as per the Updated EM&A Manual.				
Remarks	Current direction during mid-ebb sampling on 12/10:				

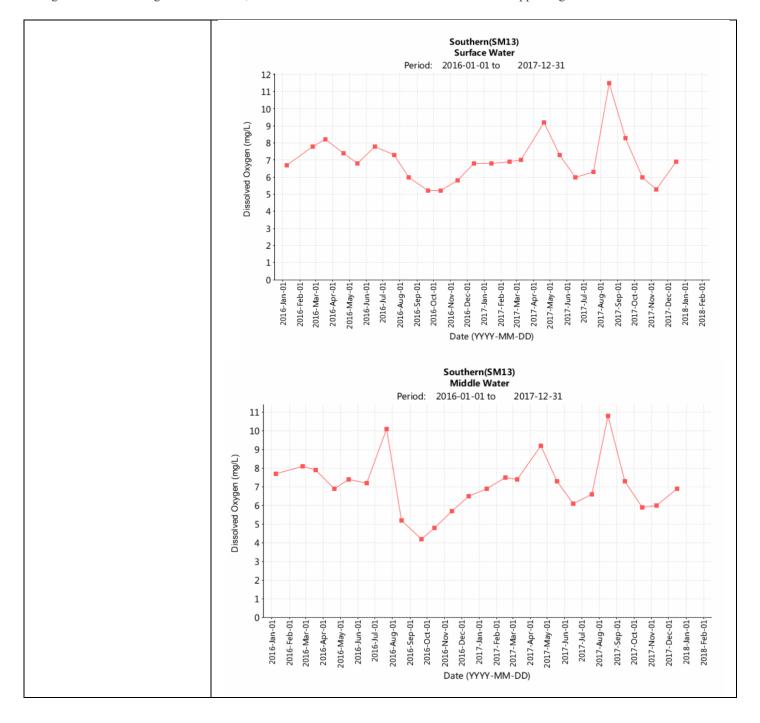


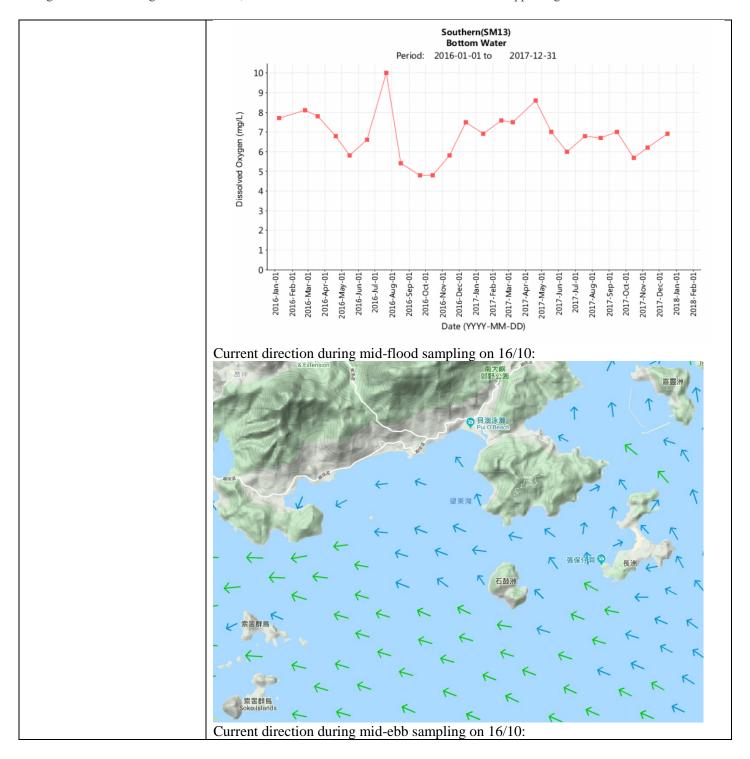

Project	Integrated Waste Management Facilities, Phase 1				
Date	14 October 2019				
Time	15:50 – 19:00 (Mid-Flood)	15:50 – 19:00 (Mid-Flood)			
	10:50 – 14:20 (Mid-Ebb)				
	Mid-Flood				
Monitoring Location	B1, B2, B4, C1A, C2A, F1A	B1, B2, B4, C1A, C2A, F1A, H1, CR1, CR2, S2A & S3			
	+ B1 S1	B2 PROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARINE CABLES \$2 H1 SHER KWU CHAU CR2 S3 CR1 PROPOSED RECLAIMED AREA FOR THE IWMIF	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Parameter	Dissolved Oxygen (DO)				
Action & Limit Levels	Action Level	Limit Level			
retion & Emilit Ecvers	\leq 7.13 mg/L	$\leq 4.00 \text{ mg/L}$			
Measurement Level	Impact Station(s) with	Control Stations	Impact Station(s) without		
Treasurement Bever	Exceedance		Exceedance		
	6.88 mg/L (B1)	7.01 mg/L (C1A)	7.19 mg/L (B3)		
	7.09 mg/L (B2)	7.07 mg/L (C2A)	7.19 mg/L (M1)		
	6.95 mg/L (B4)	7.07 mg/L (C211)	7.23 mg/L (S1)		
	6.88 mg/L (F1A)		7.23 Hg/L (51)		
	7.02 mg/L (H1)				
	7.02 mg/L (TIT) 7.12 mg/L (CR1)				
	7.12 mg/L (CR1) 7.04 mg/L (CR2)				
	6.78 mg/L (S2A)				
Possible reason for Action or	6.98 mg/L (S3)	(D1 D2 D4 E14 H1 CD1 C	CD2 C2 A & C2) in also din a		
		(B1, B2, B4, F1A, H1, CR1, C			
Limit Level Non-compliance	1	a) exhibited low and similar D			
	_	oring stations has occurred in	the Project in October		
	2018.				
	By reviewing the available data from EPD, the DO level of marine water monitor				
stations SM12 & SM13 in October 2016 & October 2017 is also below Action					
	stations SM12 & SM13 in Oc				
	stations SM12 & SM13 in Oc (7.13 mg/L) during dry seaso	on. Considering the absence of	distinct low DO at the		
	stations SM12 & SM13 in Oc (7.13 mg/L) during dry seaso impact stations near to the Pr	on. Considering the absence of oject Site and plausible season	distinct low DO at the factor, it is concluded		
	stations SM12 & SM13 in Oc (7.13 mg/L) during dry seaso impact stations near to the Pr that exceedance of Action lev	on. Considering the absence of roject Site and plausible season wel of DO at these monitoring	distinct low DO at the nal factor, it is concluded stations are related to		
	stations SM12 & SM13 in Oc (7.13 mg/L) during dry seaso impact stations near to the Pr that exceedance of Action lev	on. Considering the absence of roject Site and plausible season wel of DO at these monitoring ons and deemed to be unrelated.	distinct low DO at the nal factor, it is concluded stations are related to		

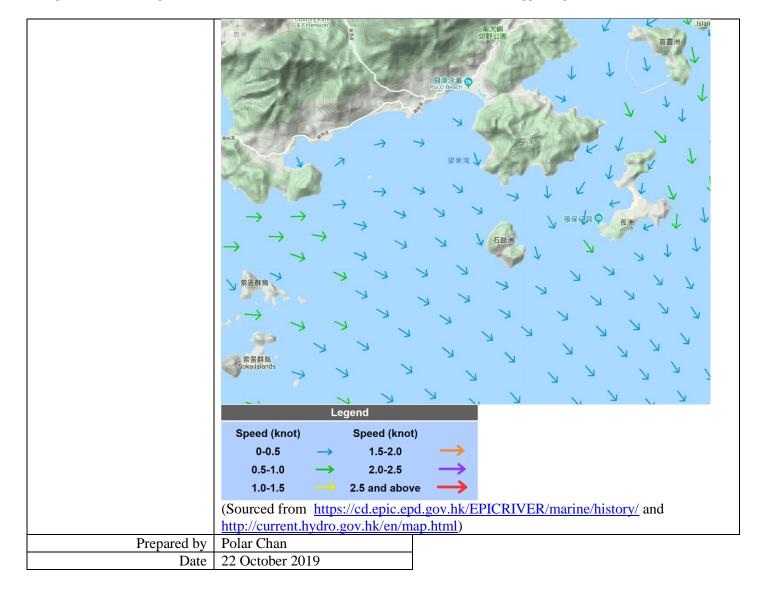

Monitoring Location	B1, B2, B4, C1A, C2A, F1A,	, H1, M1, CR1, CR2, S1, S2A	A & S3
	+ B1 • S1	B2 A PROPOSED 132KV SUBMARINE CABLES B3 B4 SHER RWU CHAU PROPOSED RECLAIMED AREA FOR THE MIMIF	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Dissolved Oxygen (DO)		
Action & Limit Levels	Action Level	Limit Level	
Action & Limit Levels	\leq 7.13 mg/L	$\leq 4.00 \text{ mg/L}$	
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without
ivicusurement Lever	Exceedance	Control Stations	Exceedance
	7.02 mg/L (B1)	6.98 mg/L (C1A)	7.19 mg/L (B3)
	6.85 mg/L (B2)	7.06 mg/L (C2A)	
	7.08 mg/L (B4)		
	6.95 mg/L (F1A)		
	6.87 mg/L (H1)		
	6.89 mg/L (M1)		
	6.84 mg/L (CR1)		
	6.84 mg/L (CR2)		
	6.79 mg/L (S1) 6.95 mg/L (S2A)		
	7.01 mg/L (S2A)		
Possible reason for Action or Limit Level Non-compliance	Most of monitoring stations (including control stations (C1 pattern of drop of DO level at October 2018.	1A & C2A) exhibited low and	d similar DO level. This
	B	. C IDD 4 DO1 1	
	•		•
		_	
Actions taken / to be taken			
			11
	mitigation measures as per th	ie Updated EM&A Manual.	
	including control stations (C1 pattern of drop of DO level at October 2018. By reviewing the available da stations SM12 & SM13 in Oc (7.13 mg/L) during dry seaso impact stations near to the Protection of Action levisurrounding weather condition Examination of environmental weekly inspection, and the Co	A& C2A) exhibited low and t all monitoring stations has detailed at a from EPD, the DO level of ctober 2016 & October 2017 on. Considering the absence of coject Site and plausible season well of DO at these monitoring ons and deemed to be unrelated all performance of the Project contractor is reminded to implicate the contractor of the project contractor is reminded to implicate and performance of the Project contractor is reminded to implicate the contractor is reminded to implicate the contractor of the project contractor is reminded to implicate the contractor in the contractor is reminded to implicate the contractor in the contractor is reminded to implicate the contractor in the contractor is reminded to implicate the contractor in the contractor is reminded to implicate the contractor in the contractor is reminded to implicate the contractor in the contractor is reminded to implicate the contractor in the contractor is reminded to implicate the contractor in the contractor in the contractor is reminded to implicate the contractor in the con	of similar DO level. This occurred in the Project in of marine water monitoring is also below Action Level of distinct low DO at the onal factor, it is concluded a stations are related to the Project. will be continued during the




Project	Integrated Waste Management Facilities, Phase 1				
Date	14 Oct 2019 (Lab result received on 17 Oct 2019)				
Time	10:50 – 14:20 (Mid-Ebb)				
Mid-Ebb					
Monitoring Location	B2, M1, CR1, CR2, S2A & S	B2, M1, CR1, CR2, S2A & S3			
	+ B1 S1-	PROPOSED OUTFALL + PROPOSED 11 SUBMARINE CA PROPOSED RECLAIMER FOR THE IMME		F1 F1A N F1 F1A N C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
Action & Limit Levels	$\geq 8.0 \text{ mg/L}$		$\geq 10.0 \text{ mg/L}$		
Measurement Level	Impact Station(s) of	Control Stati		Impact Station(s) without	
Wedstrement Level	Exceedance	Control Stati	Olis	Exceedance	
	8.8 mg/L (B2)	5.2 mg/L (C1	1A)	6.3 mg/L (B1)	
	12.5 mg/L (M1)	7.3 mg/L (C2	,	7.8 mg/L (B3)	
	12.5 mg/L (CR1)	/.3 mg/2 (e)	21 1)	7.5 mg/L (B4)	
	10.5 mg/L (CR2)			7.8 mg/L (F1A)	
	8.3 mg/L (S2A)			5.7 mg/L (H1)	
	9.5 mg/L (S3)			6.0 mg/L (S1)	
Possible reason for Action or		14/10 include	DCM main wor		
Limit Level Non-compliance	DCM main works, cone penetration test, levelling the sand blanket, trimming hig spot of sand blanket, rock filling works, diving works for installation of settlement marker and storage surface rock at reclamation area.			and blanket, trimming high or installation of settlement	
	Dominating sea current direction was found to be from Northwest to Southeast waters around Shek Kwu Chau.				
	B2, S2A & M1 are located at unrelated stream direction (neither upstream not downstream, far away) to the works location, exceedances of these monitoring station are deemed to be unrelated to the Project. CR1 is located downstream, CR2 & S3 are located close the works location within the Project site while silt curtain checking was implemented on Chun Tai 2 (10:10), GE 851 (10:00), 宏建 2 (10:00), Cheung Kee No.10 (07:00) & 同富 18 (10:00) by the Contractor and checking results showed that no deficiency of silt curtain was found of				
				on Chun Tai 2 (10:10), GD- & 同富 18 (10:00) by the	


	that day. No sand blanket levelling works scheduled in GD-853 was carried out with refer to the site diary on that day.		
	From MMO monitoring records on 14/10, MMO teams were arranged for one DCM barge and five derrick barges (同富 18, Chun Tai 2, GD-851, GD-853, 宏建 2 &		
	Cheung Kee No.10) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity.		
	According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. It might suggest that the SS exceedance at CR1, CR2 & S3 are deemed to be unrelated to the Project.		
	Site tidiness in the present barges in the Project site were checked during weekly site		
	inspection on 08/10. No major observation of improper site practices that could		
	contribute to the increase of the suspended solids recorded.		
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the		
	weekly inspection, and the Contractor is reminded to implement all applicable		
D I	mitigation measures as per the Updated EM&A Manual.		
Remarks	Current direction during mid-ebb sampling on 14/10: A Extension		
	Legend		
	Speed (knot) Speed (knot) 0-0.5 → 1.5-2.0 →		
	0.5-1.0 \rightarrow 2.0-2.5 \rightarrow		
	1.0-1.5 -> 2.5 and above ->		
	(Sourced from http://current.hydro.gov.hk/en/map.html)		
Prepared by	Polar Chan		
Date	18 Oct 2019		
1	<u>, </u>		

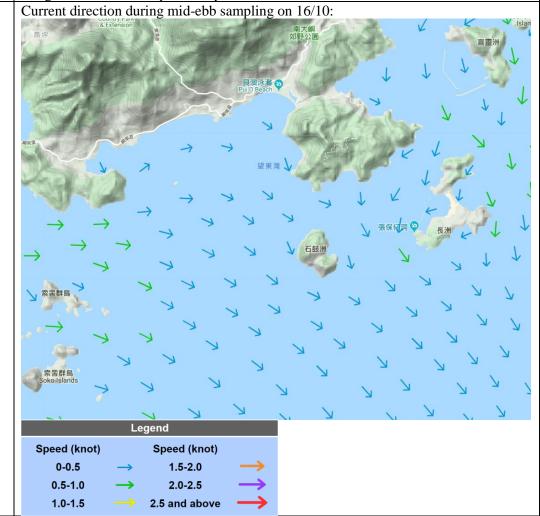

Project	Integrated Waste Managemen	nt Facilities, Pl	hase 1	
Date	16 October 2019			
Time	08:00 – 10:40 (Mid-Flood)			
	11:55 – 15:25 (Mid-Ebb)			
	Mid-Fl	lood		
Monitoring Location	B1, B2, B3, B4, C1A, C2A,	F1A, H1, M1,	CR1, CR2, S1,	S2A & S3
	+ B1	ROPOSED OUTFALL + PROPOSED 12 SUBMARINE CA PROPOSED RECLAIMER FOR THE IMMIF	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Domonoston	Dissaluad Owner (DO)			
Parameter	Dissolved Oxygen (DO)		Timele Transl	
Action & Limit Levels	Action Level		Limit Level	
Measurement Level	\leq 7.13 mg/L Impact Station(s) with	Control Stati	$\leq 4.00 \text{ mg/L}$	Impact Station(s) without
Weasurement Level	Exceedance	Control Stati	Olis	Exceedance
	6.08 mg/L (B1)	6.16 mg/L (C	71 ()	Exceedance
	5.89 mg/L (B2)	5.89 mg/L (C		
		3.69 mg/L (C	2A)	
	6.14 mg/L (B3) 6.15 mg/L (B4)			
	6.01 mg/L (F1A)			
	6.00 mg/L (H1)			
	5.99 mg/L (M1)			
	6.04 mg/L (CR1)			
	6.06 mg/L (CR2)			
	5.93 mg/L (S1)			
	6.13 mg/L (S2A)			
Describile manager for Astronom	6.07 mg/L (S3)	1	-4: (C1 A 0	(2 A)1:1:4 - 1 1 1
Possible reason for Action or	All monitoring stations inclu	•	· ·	•
Limit Level Non-compliance	similar DO level. This pattern occurred in the Project in Oc	_) level at all m	onitoring stations has
	By reviewing the available destations SM12 & SM13 in Octoor (7.13 mg/L) during dry seaso impact stations near to the Prothat exceedance of Action levels and the station of	ata from EPD, ctober 2016 & on. Considering roject Site and	October 2017 is g the absence of plausible seaso	is also below Action Level f distinct low DO at the nal factor, it is concluded


	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb			
Monitoring Location		F1A, H1, M1, CR1, CR2, S1,	S2A & S3	
Monitoring Location	B1, B2, B3, B4, CIA, C2A, 1	ROPOSED OUTFALL + APROPOSED 122KV SUBMARINE CABLES B3 B4 S2 H1 SHER KWU CHAU	F1 F1A N N Key A PROPOSED 132KV SUBMARINE CABLE	
		PROPOSED RECLAIMED AREA-FOR THE IMMF	PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Dissolved Oxygen (DO)			
Action & Limit Levels	Action Level	Limit Level		
	\leq 7.13 mg/L	\leq 4.00 mg/L		
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance	6.42 m ~ /L (C1.A)	Exceedance	
	6.43 mg/L (B1) 6.23 mg/L (B2)	6.43 mg/L (C1A) 6.47 mg/L (C2A)		
	6.46 mg/L (B3)	0.47 mg/L (C2A)		
	6.35 mg/L (B4)			
	6.28 mg/L (F1A)			
	6.37 mg/L (H1)			
	6.24 mg/L (M1)			
	6.50 mg/L (CR1)			
	6.55 mg/L (CR2)			
	6.26 mg/L (S1)			
	6.46 mg/L (S2A)			
Descible masses for Astion or	6.34 mg/L (S3)	ding control stations (C1A P	C2A) archibited large and	
Possible reason for Action or Limit Level Non-compliance	•	ding control stations (C1A & n of drop of DO level at all m	-	
Limit Level Non-compliance	occurred in the Project in Oc	_	onnoring stations has	
	By reviewing the available d	ata from EPD, the DO level o	f marine water monitoring	
		ctober 2016 & October 2017		
	(7.13 mg/L) during dry seaso	on. Considering the absence of	f distinct low DO at the	
	_	oject Site and plausible seaso		
		vel of DO at all monitoring sta		
		ons and deemed to be unrelate		
Actions taken / to be taken		al performance of the Project		
		ontractor is reminded to imple	ement all applicable	
Damanta	mitigation measures as per the			
Remarks	Supporting figures of the EP	D water data:		

Project	Integrated Waste Management Facilities, Phase 1			
Date	16 Oct 2019 (Lab result received on 21 Oct 2019)			
Time	11:55 – 15:25 (Mid-Ebb)			
Mid-Ebb				
Monitoring Location	B4 & CR1 + B1 S1-	B2 PROPOSED OUTFALL 4 PROPOSED 132KV SUBMARINE CABLES B3 H1 SHEK KWU CHAU PROPOSED RECLAIMED AREA FOR THE WIMF	REPORT OF THE INVITED BY A PROPOSED 132KV SUBMARINE CABLE OC MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Leve	.1	
Action & Limit Levels				
Measurement Level Possible reason for Action or		Control Stations 17.5 mg/L (C1A) 19.3 mg/L (C2A)	L (130% of C1A) Impact Station(s) without Exceedance 20.3 mg/L (B1) 11.8 mg/L (B2) 19.5 mg/L (B3) 19.3 mg/L (F1A) 15.7 mg/L (H1) 19.7 mg/L (M1) 19.2 mg/L (CR2) 15.3 mg/L (S1) 16.7 mg/L (S2A) 16.2 mg/L (S3) works, DCM sample coring for	
Limit Level Non-compliance	DCM main works, cone pe formation of caisson seawa works, taking tube samples vibratory hammer with H-bea Dominating sea current dire waters around Shek Kwu Cha	enetration test, levelling that laying geotextiles at at vertical seawall and loam. The ection was found to be from the ection was found to be from the ection by sampling team.	he sand blanket, flattening the reclamation area, rock filling posening the slag materials by om Northwest to Southeast at & Marine Mammal Observer	

B4 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring station is deemed to be unrelated to the Project.

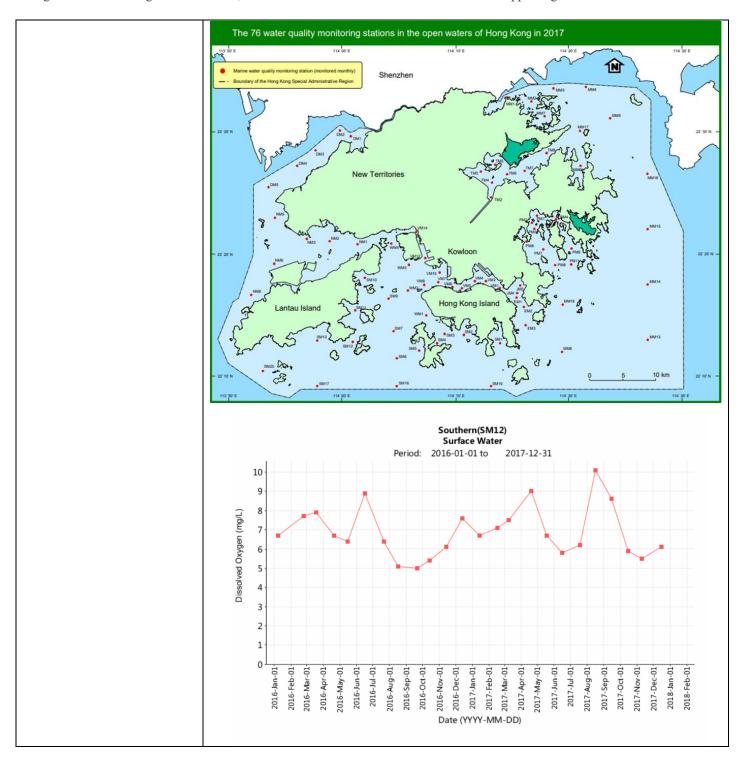
CR1 is located close to the works location within the Project site while silt curtain checking was implemented on Cheung Kee No.10 (08:30) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket levelling works scheduled in GD-851 & GD-853 were carried out with refer to the site diary on that day. No rock filling work scheduled in 同富 18 was carried out with refer to the site diary on that day.

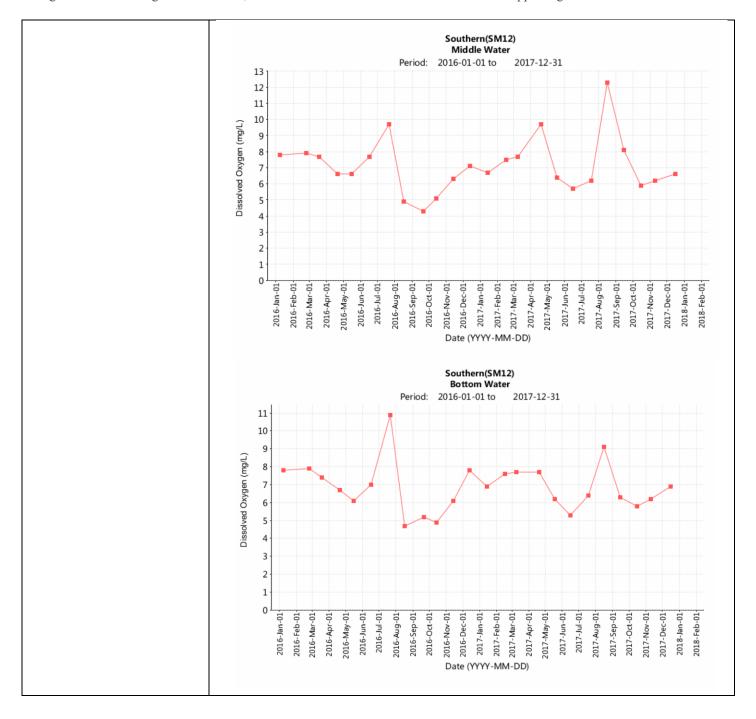

From MMO monitoring records on 16/10, MMO teams were arranged to four derrick barges (GD-853, GD-851, 同富 18 & Cheung Kee No.10) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. It might suggest that the SS exceedance at B4 & CR1 is deemed to be unrelated to the project.

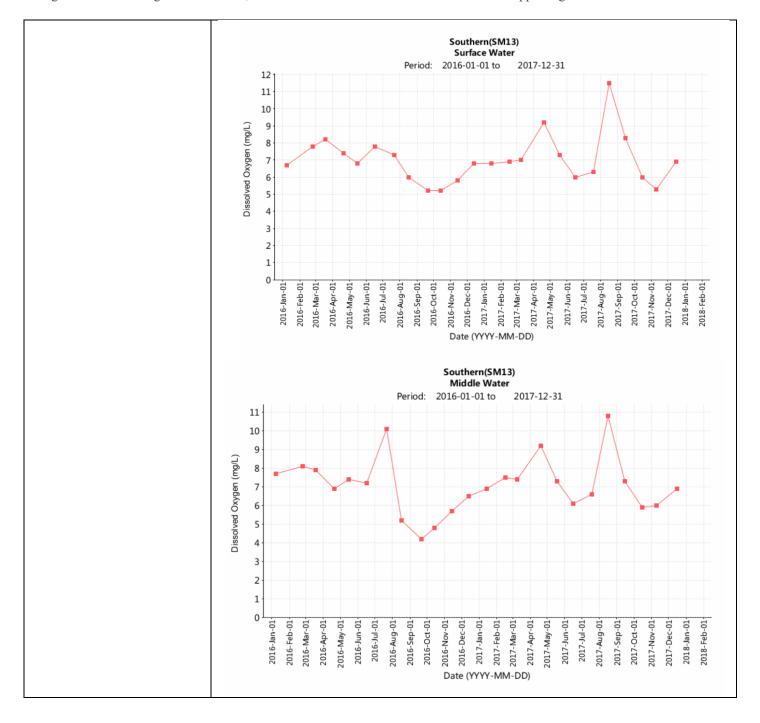
For the weekly site inspection on 15/10, no site inspection could be performed due to wavy condition of the sea. For reference, site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.

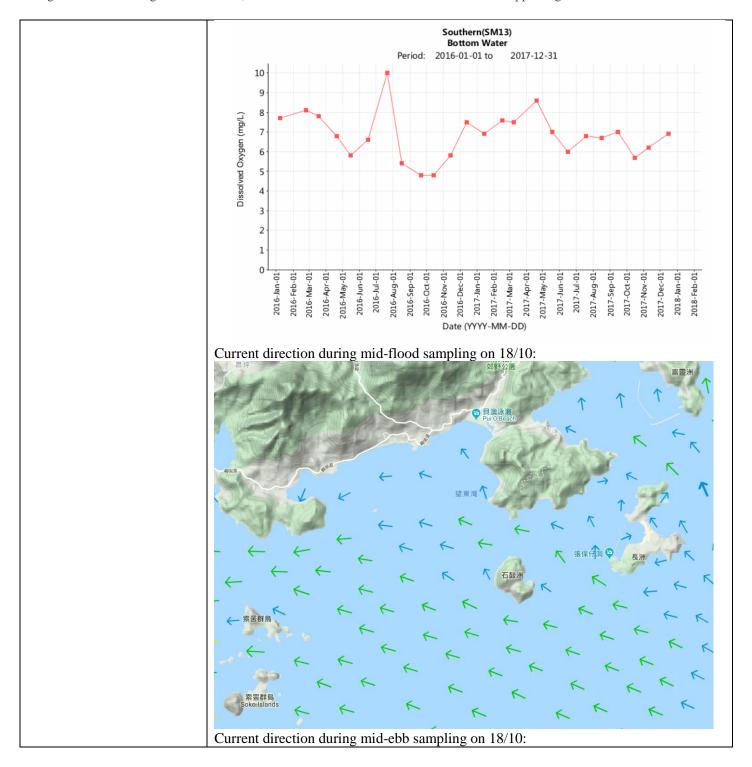
Actions taken / to be taken

Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.

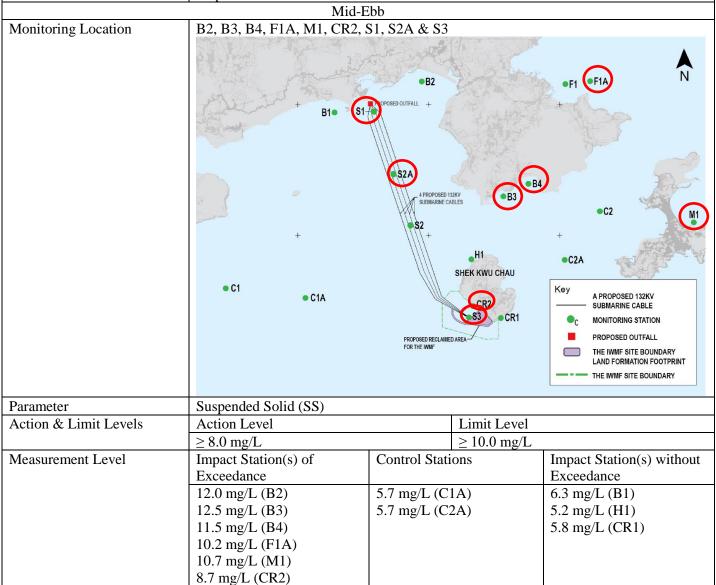

Remarks



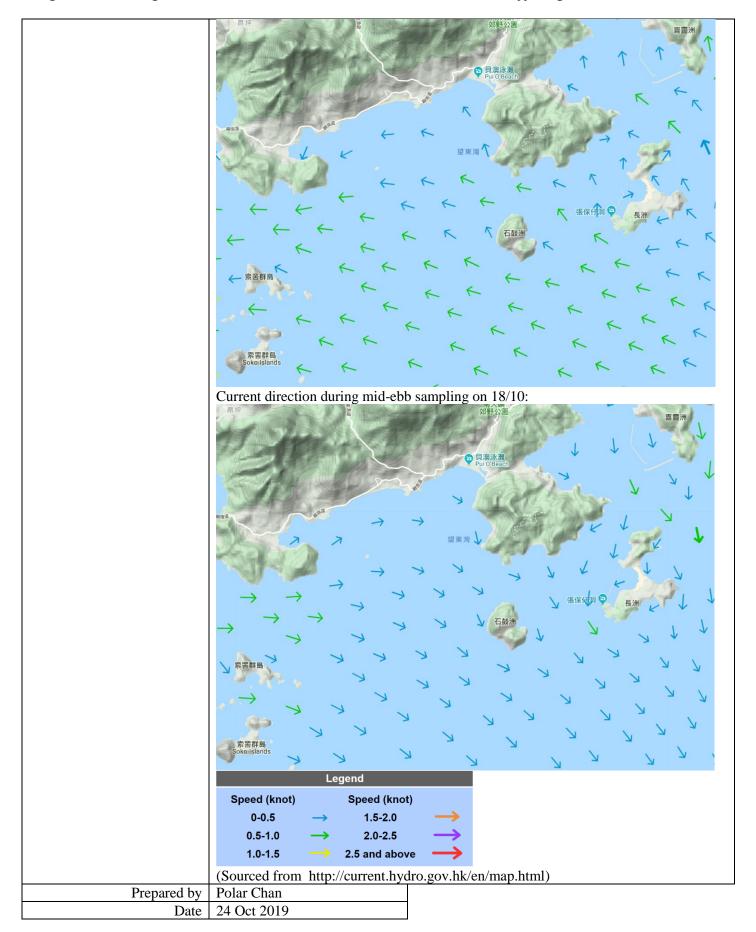

	(Sourced from http://current.hydro.gov.hk/en/map.html)	
Prepared by	Polar Chan	
Date	22 Oct 2019	


Project	Integrated Waste Management Facilities, Phase 1				
Date	18 October 2019	18 October 2019			
Time	08:00 – 12:15 (Mid-Flood)				
	13:02 – 16:32 (Mid-Ebb)				
	Mid-Flood				
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S2A & S3				
	+ B1 S1	PROPOSED OUTFALL + PROPOSED 13 SZA 4 PROPOSED 13 SUBMARINE CA PROPOSED RECLAIMER FOR THE IMMF	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE WMF SITE BOUNDARY	
Parameter	Dissolved Oxygen (DO)				
Action & Limit Levels	Action Level		Limit Level		
Action & Limit Levels	≤7.13 mg/L		$\leq 4.00 \text{ mg/L}$		
Measurement Level	Impact Station(s) with	Control Stati		Impact Station(s) without	
Wiedsurement Level	Exceedance	Control Stati	Olis	Exceedance	
	6.81 mg/L (B1)	6.92 mg/L (C	71A)	7.24 mg/L (S1)	
	6.67 mg/L (B2)	6.72 mg/L (C		7.24 llig/L (51)	
	7.07 mg/L (B3)	0.72 mg/L (C	2211)		
	6.64 mg/L (B4)				
	6.97 mg/L (F1A)				
	6.84 mg/L (H1)				
	6.79 mg/L (M1)				
	6.99 mg/L (CR1)				
	6.93 mg/L (CR2)				
	6.59 mg/L (S2A)				
	6.72 mg/L (S3)				
Possible reason for Action or	Most of monitoring stations ((B1 B2 B3 B	4 F1A H1 M	1 CR1 CR2 S2A & S3)	
Limit Level Non-compliance	including control stations (C.				
Emili Level Non-compliance	pattern of drop of DO level a				
	October 2018.	t an monitoring	g stations has o	ecured in the Project in	
	By reviewing the available distations SM12 & SM13 in Oct (7.13 mg/L) during dry seaso impact stations near to the Pr that exceedance of Action levels and the stations of the stations of the Pr that exceedance of Action levels are stations.	ctober 2016 & on. Considering roject Site and j	October 2017 is the absence of plausible season	s also below Action Level f distinct low DO at the nal factor, it is concluded	

	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb			
Monitoring Location		F1A, H1, M1, CR1, CR2, S1,	S2A & S3	
Monitoring Location	B1, B2, B3, B4, CIA, C2A, I	ROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARBNE CABLES 82 H1 SHER RWU CHAU CR2 CR1	F1 F1A N F1 F1A N Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION	
		PROPOSED RECLAIMED AREA-FOR THE IMMF	PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Dissolved Oxygen (DO)			
Action & Limit Levels	Action Level	Limit Level		
	≤ 7.13 mg/L	≤ 4.00 mg/L		
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance		Exceedance	
	6.87 mg/L (B1)	6.54 mg/L (C1A)		
	6.74 mg/L (B2)	6.60 mg/L (C2A)		
	6.57 mg/L (B3)			
	6.80 mg/L (B4) 6.72 mg/L (F1A)			
	6.80 mg/L (H1)			
	6.77 mg/L (M1)			
	6.55 mg/L (CR1)			
	6.69 mg/L (CR2)			
	6.77 mg/L (S1)			
	6.74 mg/L (S2A)			
	6.67 mg/L (S3)			
Possible reason for Action or	•	ding control stations (C1A &		
Limit Level Non-compliance	_	n of drop of DO level at all m	onitoring stations has	
	occurred in the Project in Oc	tober 2018.		
	By raviawing the available d	ata from EPD, the DO level o	f moring water monitoring	
		ctober 2016 & October 2017:		
		on. Considering the absence of		
		roject Site and plausible seaso		
	_	vel of DO at all monitoring sta		
	surrounding weather condition	ons and deemed to be unrelate	ed to the Project.	
Actions taken / to be taken		al performance of the Project		
		ontractor is reminded to imple	ement all applicable	
7	mitigation measures as per th			
Remarks	Supporting figures of the EP	D water data:		

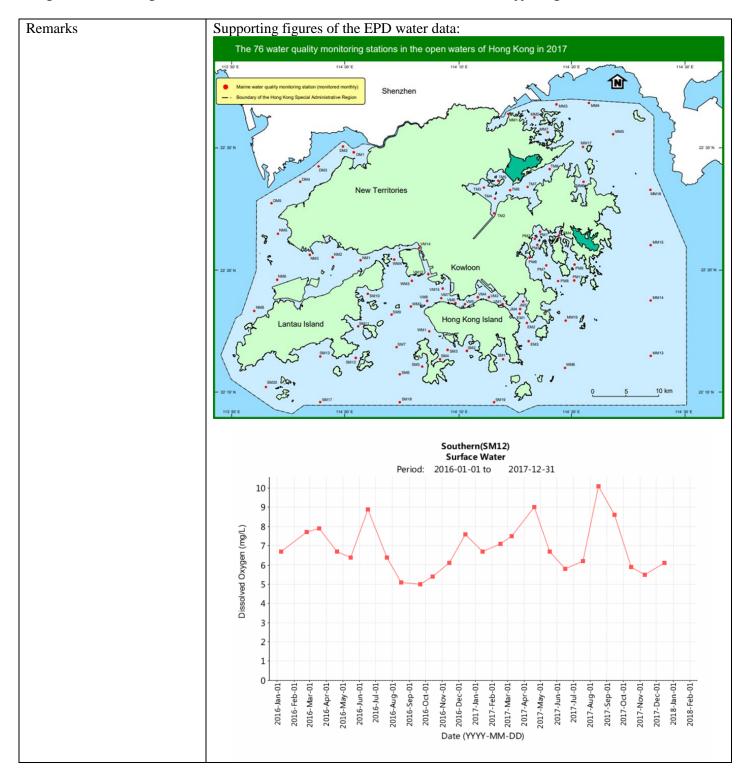

for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.	Project	Integrated Waste Management Facilities, Phase 1				
Monitoring Location B4, H1 & M1 B4, H1 & M1 B4, H1 & M1 B5, Monitoring Location B4, H1 & M1 B4, H1 & M1 B5, Monitoring Location B5, Monitoring Location B4, H1 & M1 B5, Monitoring Location B5, B6, B7, B7, B7, B7, B7, B7, B7, B7, B7, B7	Date					
Monitoring Location B4, H1 & M1 B10 S1	Time	08:00 – 12:15 (Mid-Flood)				
B4, H1 & M1 B10 SINGER CALL B10 B22 B10 B10						
Basing Station (S S) Action & Limit Level Action & Limit Level Suspended Solid (SS)						
Parameter Suspended Solid (SS) Action & Limit Levels Action Level 2 16.2 mg/L (120% of C2A) Exceedance 17.0 mg/L (B4) 19.2 mg/L (H1) 19.2 mg/L (H1) 16.3 mg/L (M1) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.	Monitoring Location	B4, H1 & M1				
Action & Limit Levels Action & Limit Level ≥ 16.2 mg/L (120% of C2A) ≥ 17.6 mg/L (130% of C2A) Measurement Level Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 17.0 mg/L (B4) 13.7 mg/L (C1A) 14.0 mg/L (B1) 19.2 mg/L (H1) 13.5 mg/L (C2A) 14.3 mg/L (B2) 16.3 mg/L (M1) 15.5 mg/L (B3) 13.0 mg/L (F1A) 10.8 mg/L (CR2) 13.5 mg/L (S2A) 10.5 mg/L (S3) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging work for vertical seawall and loosening the slag materials by vibratory hammer with 15 beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.		+ B1 S1 PROPOSED DUIFALL + # PROPOSED 132KV SIGNMARNE CABLES B3 CC2 M1 **C2A **C2				
Action & Limit Levels Action Level Limit Level ≥ 16.2 mg/L (120% of C2A) ≥ 17.6 mg/L (130% of C2A) Measurement Level Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 17.0 mg/L (B4) 13.7 mg/L (C1A) 14.0 mg/L (B1) 19.2 mg/L (H1) 13.5 mg/L (C2A) 14.3 mg/L (B2) 16.3 mg/L (M1) 15.5 mg/L (B3) 13.0 mg/L (F1A) 10.8 mg/L (CR2) 13.5 mg/L (S1) 12.3 mg/L (S2A) 10.5 mg/L (S3) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging work for vertical seawall and loosening the slag materials by vibratory hammer with 10 beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.	Doromatar					
≥ 16.2 mg/L (120% of C2A) ≥ 17.6 mg/L (130% of C2A)				Limit Laval		
Impact Station(s) of Exceedance	Action & Limit Levels				120% of C2A)	
Exceedance 17.0 mg/L (B4) 19.2 mg/L (H1) 19.2 mg/L (M1) 16.3 mg/L (M1) Possible reason for Action or Limit Level Non-compliance Exceedance 13.7 mg/L (C1A) 14.0 mg/L (B1) 14.3 mg/L (B2) 15.5 mg/L (B3) 13.0 mg/L (F1A) 10.8 mg/L (CR1) 14.3 mg/L (CR2) 13.5 mg/L (S1) 12.3 mg/L (S2A) 10.5 mg/L (S3) PCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging work for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.	Massurament Lavel		Control Stati			
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for vertical seawall and loosening the slag materials by vibratory hammer with beam. 19.2 mg/L (H1) 16.3 mg/L (B2) 15.5 mg/L (B3) 13.0 mg/L (CR1) 14.3 mg/L (CR2) 13.5 mg/L (S1) 12.3 mg/L (S2A) 10.5 mg/L (S3) Works scheduled on site on 18/10 include DCM main works, DCM sample coring for Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for Limit Level Non-compliance DCM main works, cone penetration test, levelling the sand blanket, rock filling works inking and towing for caisson, laying geotextiles at reclamation area, dredging work for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.	Measurement Level		Control Stations			
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.		17.0 mg/L (B4)	13.7 mg/L (C	C1A)	14.0 mg/L (B1)	
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for Limit Level Non-compliance DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging work for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.		19.2 mg/L (H1)	13.5 mg/L (C	C2A)	14.3 mg/L (B2)	
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for Limit Level Non-compliance DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging work for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.					15.5 mg/L (B3)	
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging works for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.						
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging works for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.						
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging work for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.					•	
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging works for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.					•	
Possible reason for Action or Limit Level Non-compliance DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging works for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.						
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 18/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, rock filling works sinking and towing for caisson, laying geotextiles at reclamation area, dredging works for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.						
sinking and towing for caisson, laying geotextiles at reclamation area, dredging wor for vertical seawall and loosening the slag materials by vibratory hammer with beam. Dominating sea current direction was found to be from Southeast to Northwest waters around Shek Kwu Chau.			cheduled on site on 18/10 include DCM main works, DCM sample coring for			
waters around Shek Kwu Chau.	Elimit Level Ivon-compliance	sinking and towing for caisson, laying geotextiles at reclamation area, dredging works for vertical seawall and loosening the slag materials by vibratory hammer with H-				
According to the field observation by sampling team & Marine Mammal Observ		Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.				
team during sampling event, no silt plume was observed in the Project site.		According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.				

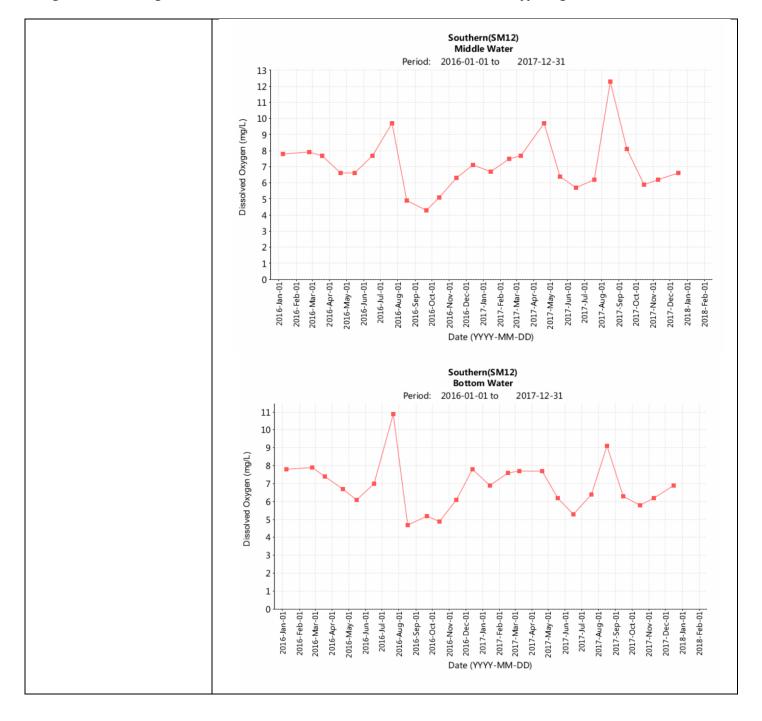
B4 & M1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project.

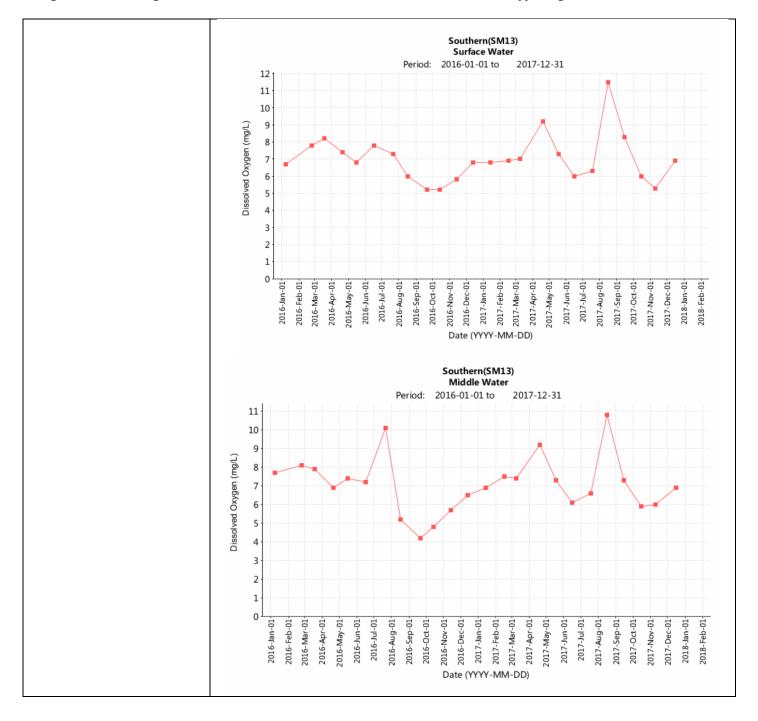

H1 is located downstream to the Project site while silt curtain checking was implemented on DL4 (07:00), UDL-2 (07:00), GD-851 (10:00) & Cheung Kee No.10 (07:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No DCM main works scheduled in ESC-62 was carried out with refer to the site diary on that day.

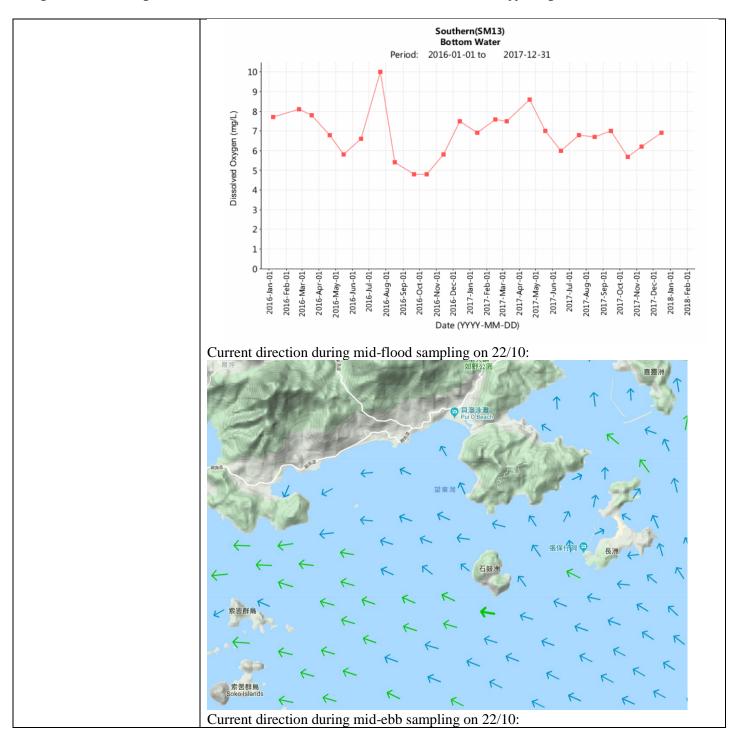
From MMO monitoring records on 18/10, MMO teams were arranged to four derrick barges (DL4, UDL-2, GD-851 & Cheung Kee No.10) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. It might suggest that the SS exceedance at B4, H1 & M1 is deemed to be unrelated to the project.

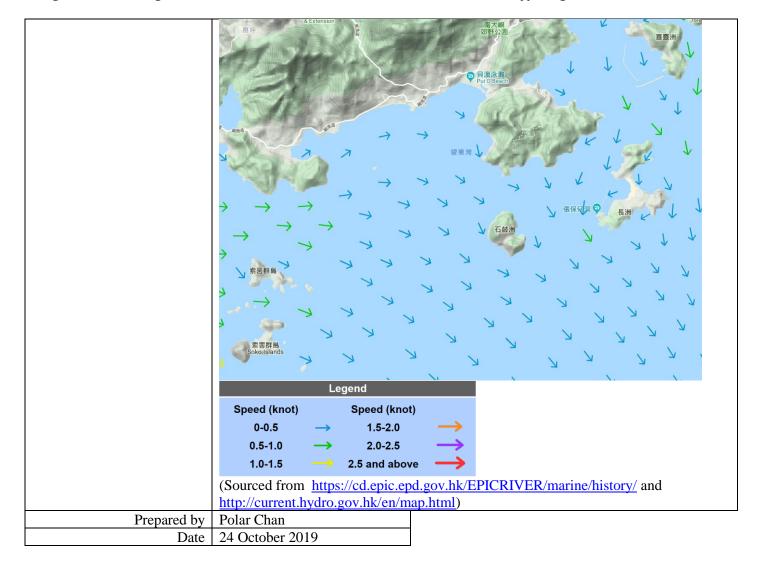
For the weekly site inspection on 15/10, no site inspection could be performed due to wavy condition of the sea. For reference, site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.

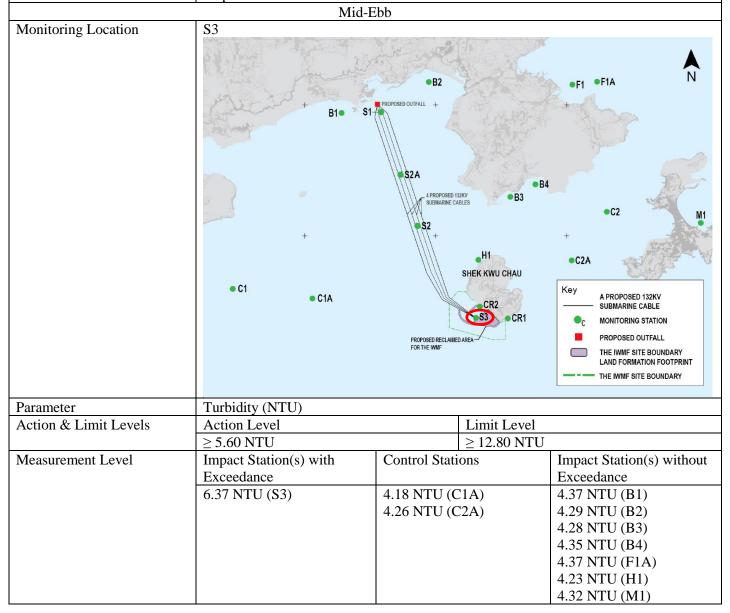



	12.5 mg/L (S1) 13.7 mg/L (S2A) 8.2 mg/L (S3)			
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 18/10 include DCM main works, DCM sample coring for			
	According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.			
	B2, B3, B4, F1A, M1, S1 & S2A are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project.			
	CR2 & S3 are located downstream to the Project site while silt curtain checking was implemented on DL4 (07:00), UDL-2 (07:00), GD-851 (10:00) & Cheung Kee No.10 (07:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No DCM main works scheduled in ESC-62 was carried out with refer to the site diary on that day.			
	From MMO monitoring records on 18/10, MMO teams were arranged to four derrick barges (DL4, UDL-2, GD-851 & Cheung Kee No.10) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. It might suggest that the SS exceedance at B2, B3, B4, F1A, M1, CR2, S1, S2A & S3 is deemed to be unrelated to the project.			
	For the weekly site inspection on 15/10, no site inspection could be performed due to wavy condition of the sea. For reference, site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.			
Actions taken / to be taken	1 3			
	weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-flood sampling on 18/10:			
TOMMIND	Content direction during find frood bumping on 10/10.			

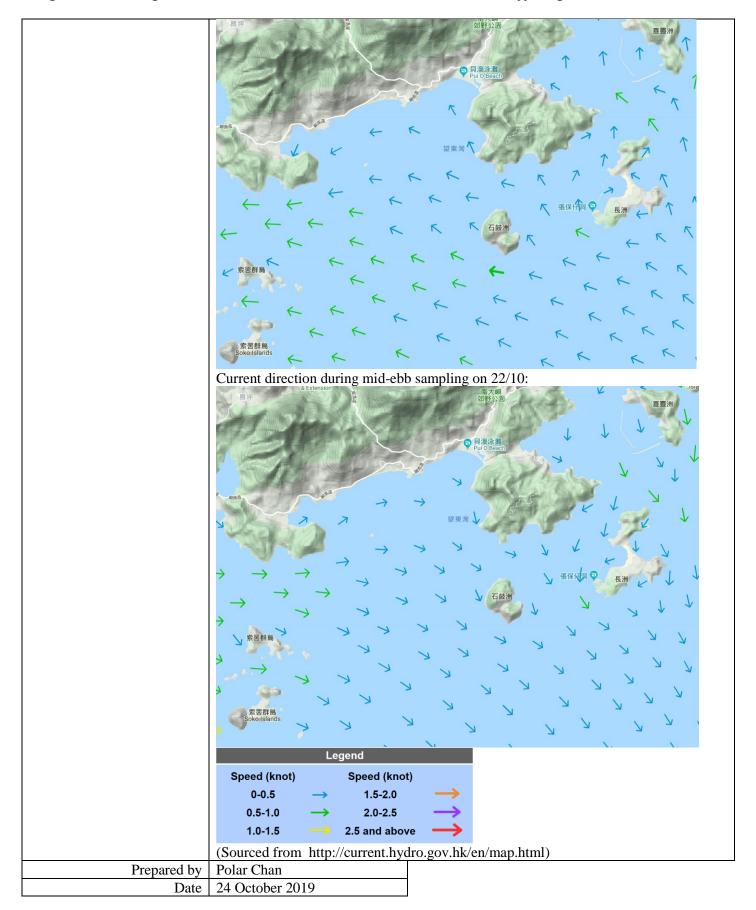



Project	Integrated Waste Management Facilities, Phase 1				
Date	22 October 2019				
Time	12:26 – 15:56 (Mid-Flood)				
	08:00 – 10:20 (Mid-Ebb)				
	Mid-Fl	lood			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B1	B2 ROPOSED OUTFALL + 4 PROPOSED 1 SUBMARINE CO FROPOSED RECLAIME FOR THE IMMF	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE WMF SITE BOUNDARY	
Parameter	Dissolved Overgon (DO)				
Action & Limit Levels	Dissolved Oxygen (DO) Action Level		Limit Level		
Action & Limit Levels					
Measurement Level	$\leq 7.13 \text{ mg/L}$ Impact Station(s) with	Control Stati	$\leq 4.00 \text{ mg/L}$	Impact Station(s) without	
Weasurement Level	Exceedance	Control Stati	IOIIS	Exceedance	
	6.36 mg/L (B1)	6.41 mg/L (0	71Δ)	Excedimee	
	6.58 mg/L (B2)	6.35 mg/L (0			
	6.22 mg/L (B3)	0.33 mg/L (C	<i>52A)</i>		
	6.29 mg/L (B4)				
	6.46 mg/L (F1A)				
	6.39 mg/L (H1)				
	6.41 mg/L (M1)				
	6.31 mg/L (CR1)				
	6.15 mg/L (CR2)				
	6.71 mg/L (S1)				
	6.33 mg/L (S2A)				
	6.46 mg/L (S3)				
Possible reason for Action or	Most of monitoring stations (R1 R2 R3 R	Λ F1Δ H1 M	1 CR1 CR2 S2A & S3)	
Limit Level Non-compliance	•				
Limit Level Non-compliance	including control stations (C1A & C2A) exhibited low and similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.				
	October 2016.				
	By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded				


	that exceedance of Action level of DO at these monitoring stations are related to surrounding weather conditions and deemed to be unrelated to the Project.				
Monitoring Location	Mid-Ebb B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B1	B2 A PROPOSED 132KV SUBMARINE CABLES B3 CR1 PROPOSED RECLAIMED AREA FOR THE IMMF	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Dogometer	Discoluted Overson (DO)				
Parameter Action & Limit Levels	Dissolved Oxygen (DO) Action Level	Limit Lev	a1		
Action & Limit Levels	\leq 7.13 mg/L	≤ 4.00 mg			
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance		
	6.53 mg/L (B1) 6.53 mg/L (B2) 6.74 mg/L (B3) 6.73 mg/L (B4) 6.29 mg/L (F1A) 6.53 mg/L (H1) 6.55 mg/L (M1) 6.49 mg/L (CR1) 6.58 mg/L (S2) 6.65 mg/L (S1)	6.64 mg/L (C1A) 6.62 mg/L (C2A)			
Possible reason for Action or Limit Level Non-compliance					
Actions taken / to be taken		al performance of the Projontractor is reminded to in	ect will be continued during the implement all applicable		


Project	Integrated Waste Management Facilities, Phase 1				
Date	22 October 2019				
Time	12:26 – 15:56 (Mid-Flood)				
	08:00 – 10:20 (Mid-Ebb)	08:00 – 10:20 (Mid-Ebb)			
	Mid-F	lood			
Monitoring Location	+ B1	PROPOSED OUTFALL + S2A 4 PROPOSED 132KV SUBMARINE CABLES \$2 + SHE	B3 B4 K KWU CHAU CR2 S3 CR1	F1 F1A C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY	
Doromotor	Turkidity (NTU)			LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Turbidity (NTU)				
Action & Limit Levels	Action Level		imit Level		
Measurement Level	\geq 5.60 NTU Impact Station(s) with	Control Stations	12.80 NTU	Import Station (a) with out	
Wieasurement Level	Exceedance	Control Stations	5	Impact Station(s) without Exceedance	
	6.43 NTU (S3)	4.53 NTU (C1A	.)	4.56 NTU (B1)	
	0.43 NTO (33)	4.39 NTU (C2A	*	4.64 NTU (B2)	
		4.37 NTO (C2A		4.59 NTU (B3)	
				4.66 NTU (B4)	
				4.48 NTU (F1A)	
				4.47 NTU (H1)	
				4.46 NTU (M1)	
				4.43 NTU (CR1)	
				5.58 NTU (CR2)	
				4.55 NTU (S1)	
	4.58 NTU (S				
Possible reason for Action or	Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at				
Limit Level Non-compliance					
	vertical seawall, rock filling				
	loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation.				
	Dominating sea current direction was found to be Southeast from to Nort waters around Shek Kwu Chau.			neast from to Northwest at	

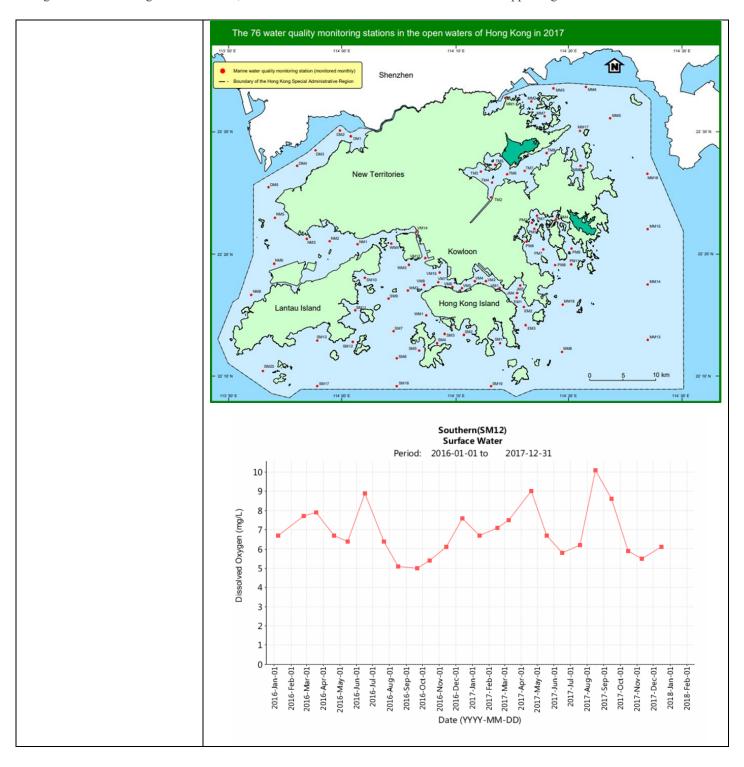
According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.

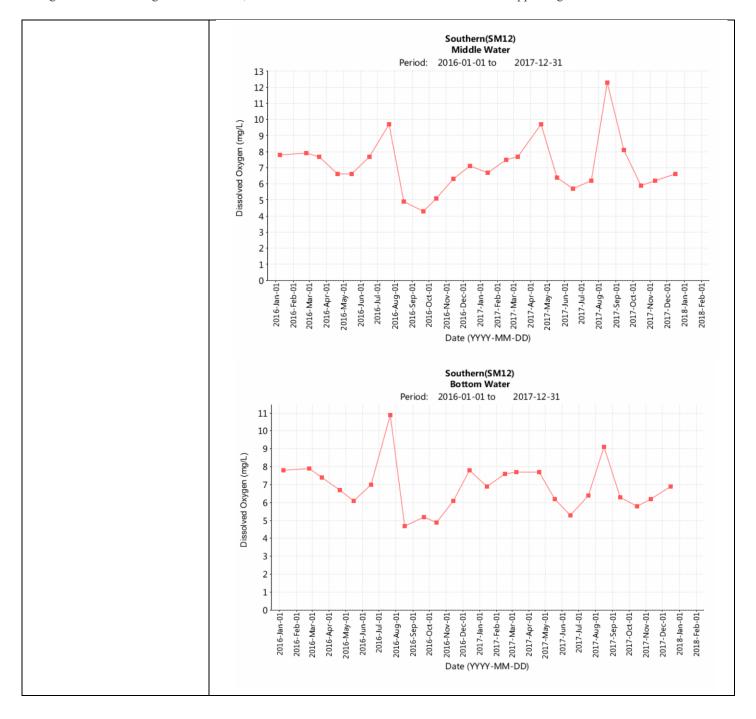

S3 is located close to the works location within the Project site while silt curtain checking was implemented on ESC-62 (07:00), GD-851 (07:00), GD-853 (07:00), 宏建 2 (22:00), 港龍 108 (07:00), 溢匯 68 (07:00) & Cheung Kee No.10 (07:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day.

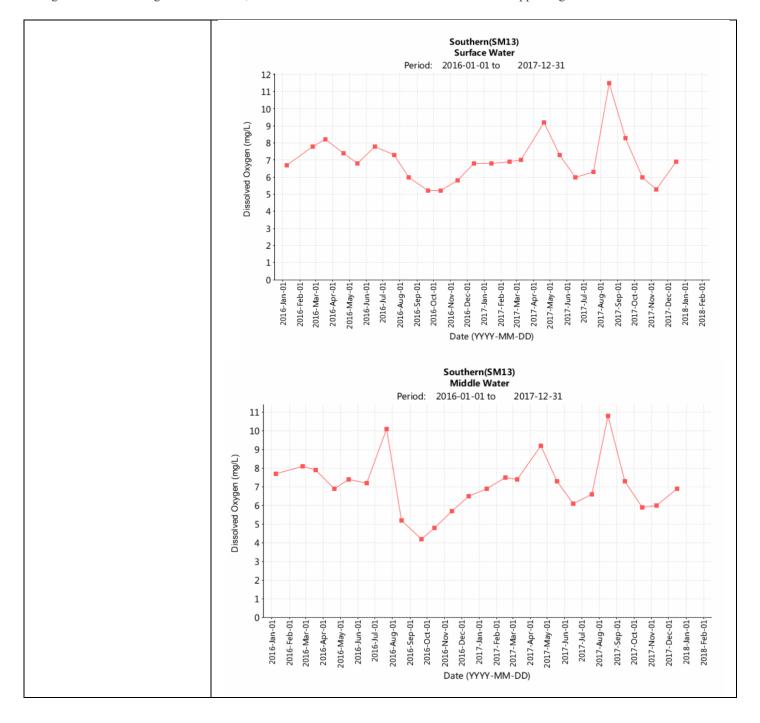
From MMO monitoring records on 22/10, MMO teams were arranged to six derrick barges (GD-851, GD-853, 宏建 2, 港龍 108, 溢匯 68 & Cheung Kee No.10) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. It might suggest that the turbidity exceedance at S3 is deemed to be unrelated to the project.

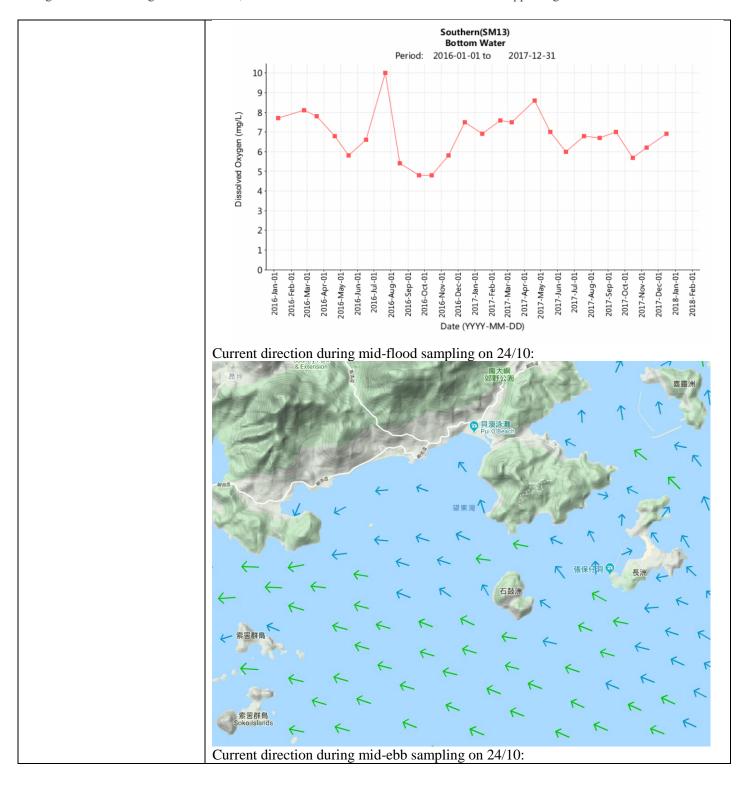
For the weekly site inspection on 15/10, no site inspection could be performed due to wavy condition of the sea. For reference, site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.

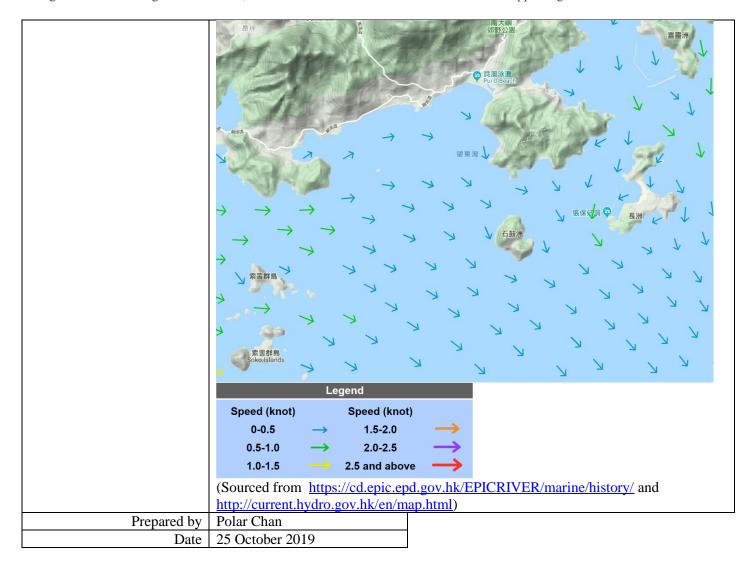
	5.03 NTU (CR1) 5.40 NTU (CR2) 4.18 NTU (S1)				
	4.31 NTU (S2A)				
Possible reason for Action or	Works scheduled on site on 22/10 include DCM main works, DCM sample coring for				
Limit Level Non-compliance	Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. S3 is located close to the works location within the Project site while silt curtain checking was implemented on ESC-62 (07:00), GD-851 (07:00), GD-853 (07:00), 定 建 2 (22:00), 港龍 108 (07:00), 溢匯 68 (07:00) & Cheung Kee No.10 (07:00) by the				
	Contractor and checking results showed that no deficiency of silt curtain was found on that day. From MMO monitoring records on 22/10, MMO teams were arranged to six derrick barges (GD-851, GD-853, 宏建 2, 港龍 108, 溢匯 68 & Cheung Kee No.10) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before				
	the commencement of and during construction activity. It might suggest that the turbidity exceedance at S3 is deemed to be unrelated to the project.				
	For the weekly site inspection on 15/10, no site inspection could be performed due to wavy condition of the sea. For reference, site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.				
Remarks	Current direction during mid-flood sampling on 22/10:				




temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.	Project	Integrated Waste Management Facilities, Phase 1				
Mid-Flood B3, H1, M1 & S2A S2A	Date					
B3, H1, M1 & S2A B1	Time	12:26 – 15:56 (Mid-Flood)	12:26 – 15:56 (Mid-Flood)			
Parameter Action & Limit Levels Action & Limit Level 2 9.0 mg/L (120% of C2A) Impact Station(s) of Exceedance 9.0 mg/L (81) 9.2 mg/L (81) 9.2 mg/L (81) 9.5 mg/L (82A) Possible reason for Action or Limit Level Non-compliance Impact Station(s) or Exceedance 9.0 mg/L (81) 9.5 mg/L (82A) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for Comporary storage of surface rock, levelling the slag material, dredging works are vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.		Mid-Fl	lood			
Action & Limit Level ≥ 9.0 mg/L (120% of C2A) ≥10.0 mg/L Measurement Level Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 9.0 mg/L (B3) 7.7 mg/L (C1A) 4.3 mg/L (B1) 9.2 mg/L (H1) 7.5 mg/L (C2A) 7.8 mg/L (B2) 10.7 mg/L (M1) 7.8 mg/L (C2A) 7.8 mg/L (CR1) 9.5 mg/L (S2A) 8.3 mg/L (CR1) 5.8 mg/L (CR2) 8.3 mg/L (S1) 6.5 mg/L (S3) Possible reason for Action or Limit Level Non-compliance Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.	Monitoring Location	+ B1 S1-	PROPOSED OUTFALL + 4 PROPOSED 13 SUBMARINE CAL 52 PROPOSED RECLAIMET	SHEK KWU CHAU	C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT	
Action & Limit Level ≥ 9.0 mg/L (120% of C2A) ≥10.0 mg/L Measurement Level Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 9.0 mg/L (B3) 7.7 mg/L (C1A) 4.3 mg/L (B1) 9.2 mg/L (H1) 7.5 mg/L (C2A) 7.8 mg/L (B2) 10.7 mg/L (M1) 7.5 mg/L (C2A) 7.8 mg/L (F1A) 9.5 mg/L (S2A) 6.3 mg/L (CR1) 5.8 mg/L (S2A) 8.3 mg/L (S1) 6.5 mg/L (S3) 9.5 mg/L (S3) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.	Doromatar	Suspended Solid (SS)				
≥ 9.0 mg/L (120% of C2A) ≥ 10.0 mg/L			<u> </u>	I imit I aval		
Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 9.0 mg/L (B3) 7.7 mg/L (C1A) 4.3 mg/L (B1) 7.8 mg/L (B2) 10.7 mg/L (M1) 7.5 mg/L (C2A) 7.8 mg/L (B4) 7.3 mg/L (F1A) 6.3 mg/L (CR1) 5.8 mg/L (CR2) 8.3 mg/L (CR1) 5.8 mg/L (CR2) 8.3 mg/L (S3) 6.5 mg/L (S3) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.	Action & Limit Levels					
Exceedance 9.0 mg/L (B3) 9.2 mg/L (H1) 7.5 mg/L (C2A) 7.8 mg/L (B2) 7.8 mg/L (B4) 7.8 mg/L (B4) 7.8 mg/L (B4) 7.8 mg/L (CR1) 7.8 mg/L (CR1) 7.8 mg/L (CR1) 7.8 mg/L (CR2) 8.3 mg/L (CR2) 8.3 mg/L (S3) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.	Massurament Lavel		Control Stati		Impact Station(s) without	
9.0 mg/L (B3) 9.2 mg/L (H1) 10.7 mg/L (M1) 9.5 mg/L (S2A) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.	Weasurement Level	1 1	Control Stati	Olis	•	
9.2 mg/L (H1) 10.7 mg/L (M1) 9.5 mg/L (S2A) Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.			7.7 mg/L (C1	ΙΔ)		
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.						
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.		•	7.5 mg/L (C2	ZA)	C ,	
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.						
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.		9.5 mg/L (S2A)				
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.					_	
Possible reason for Action or Limit Level Non-compliance Morks scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.						
Possible reason for Action or Limit Level Non-compliance Works scheduled on site on 22/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.						
Limit Level Non-compliance DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site.						
TO FIVE 66 WE AS A METOCATED AT INDEFINED REPAIR OFFICER HORIZON DAY		DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, dredging works at vertical seawall, rock filling works, flattening G200 rockfill of Caisson foundation, loading surface rock, loosening the slag material by vibratory hammer with H-beam, diving works for checking seabed condition and laying G75 for caisson foundation. Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. According to the field observation by sampling team & Marine Mammal Observer				

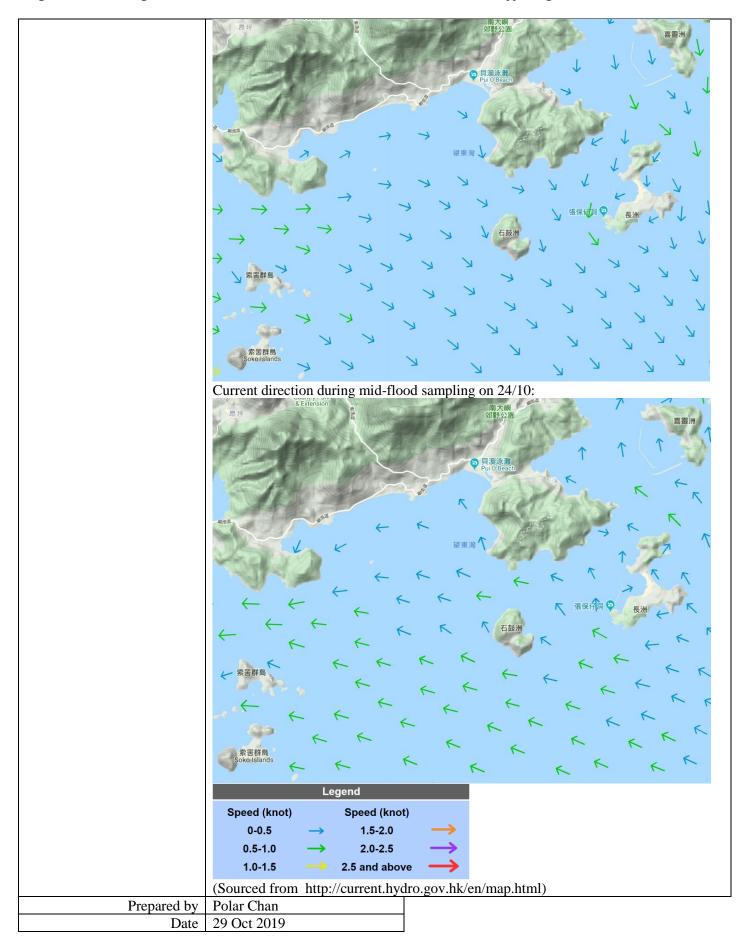

downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project. H1 is located downstream to the Project site while silt curtain checking was implemented on ESC-62 (07:00), GD-851 (07:00), GD-853 (07:00), 宏建 2 (22:00), 港龍 108 (07:00), 溢匯 68 (07:00) & Cheung Kee No.10 (07:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. From MMO monitoring records on 22/10, MMO teams were arranged to six derrick barges (GD-851, GD-853, 宏建 2, 港龍 108, 溢匯 68 & Cheung Kee No.10) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. It might suggest that the SS exceedance at B3, H1, M1 & S2A is deemed to be unrelated to the project. For the weekly site inspection on 15/10, no site inspection could be performed due to wavy condition of the sea. For reference, site tidiness in the present barges in the Project site were checked during weekly site inspection on 08/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded. Actions taken / to be taken Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. Remarks Current direction during mid-flood sampling on 22/10: Speed (knot) Speed (knot) 0-0.5 1.5-2.0 2.0-2.5 0.5-1.0 1.0-1.5 2.5 and above (Sourced from http://current.hydro.gov.hk/en/map.html) Prepared by Polar Chan 25 Oct 2019 Date


Project	Integrated Waste Management Facilities, Phase 1				
Date	24 October 2019				
Time	14:22 – 17:52 (Mid-Flood)				
	08:00 – 12:07 (Mid-Ebb)	08:00 – 12:07 (Mid-Ebb)			
	Mid-Fl	lood			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B10 S1	PROPOSED OUTFALL + PROPOSED SUBMARNE C S2 PROPOSED RECLAIME FOR THE IMMF	SHER KWU CHAU CR2 CR2 CR1	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Dissolved Oxygen (DO)		T		
Action & Limit Levels	Action Level		Limit Level		
	≤ 7.13 mg/L		$\leq 4.00 \text{ mg/L}$		
Measurement Level	Impact Station(s) with	Control Stat	ions	Impact Station(s) without	
	Exceedance	C 000 / / /	O1 A)	Exceedance	
	6.71 mg/L (B1)	6.98 mg/L (0			
	6.79 mg/L (B2)	6.75 mg/L (0	C2A)		
	6.70 mg/L (B3)				
	6.85 mg/L (B4)				
	6.75 mg/L (F1A)				
	6.77 mg/L (H1)				
	6.82 mg/L (M1)				
	6.82 mg/L (CR1)				
	6.68 mg/L (CR2)				
	6.89 mg/L (S1)				
	6.73 mg/L (S2A)				
D '11 C A .'	6.65 mg/L (S3)	1' 1 1	.: (C1 A 0		
Possible reason for Action or	All monitoring stations inclu	-			
Limit Level Non-compliance	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.				
	By reviewing the available distations SM12 & SM13 in O (7.13 mg/L) during dry seaso impact stations near to the Pr that exceedance of Action lev	ctober 2016 & on. Considering oject Site and	October 2017 ig the absence of plausible seaso	is also below Action Level f distinct low DO at the nal factor, it is concluded	


	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb			
Monitoring Location		EDD F1A, H1, M1, CR1, CR2, S1,	S2A & S3	
Monitoring Location	B1, B2, B3, B4, CIA, C2A, 1 + B10 S1	ROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARRINE CABLES B3 B3 B4 B3 B3 CR2 CR2 CR2 CR2 CR2	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION	
		PROPOSED RECLAIMED AREA-FOR THE IMMIF	PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Dissolved Oxygen (DO)			
Action & Limit Levels	Action Level	Limit Level		
	\leq 7.13 mg/L	\leq 4.00 mg/L		
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance	((0) // ((01.4))	Exceedance	
	6.54 mg/L (B1)	6.68 mg/L (C1A)		
	6.76 mg/L (B2) 6.68 mg/L (B3)	6.48 mg/L (C2A)		
	6.63 mg/L (B4)			
	6.61 mg/L (F1A)			
	6.64 mg/L (H1)			
	6.55 mg/L (M1)			
	6.68 mg/L (CR1)			
	6.63 mg/L (CR2)			
	6.87 mg/L (S1)			
	6.76 mg/L (S2A)			
	6.53 mg/L (S3)			
Possible reason for Action or	_	ding control stations (C1A &		
Limit Level Non-compliance	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.			
	Ry raviawing the available d	ata from EDD, the DO level a	of marina water manitorina	
		ata from EPD, the DO level of ctober 2016 & October 2017		
	stations SM12 & SM13 in October 2016 & October 2017 is also below Action Lev (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is conclude that exceedance of Action level of DO at all monitoring stations are related to			
		ons and deemed to be unrelate		
Actions taken / to be taken		al performance of the Project		
	-	contractor is reminded to imple	ement all applicable	
	mitigation measures as per th			
Remarks	Supporting figures of the EP	D water data:		

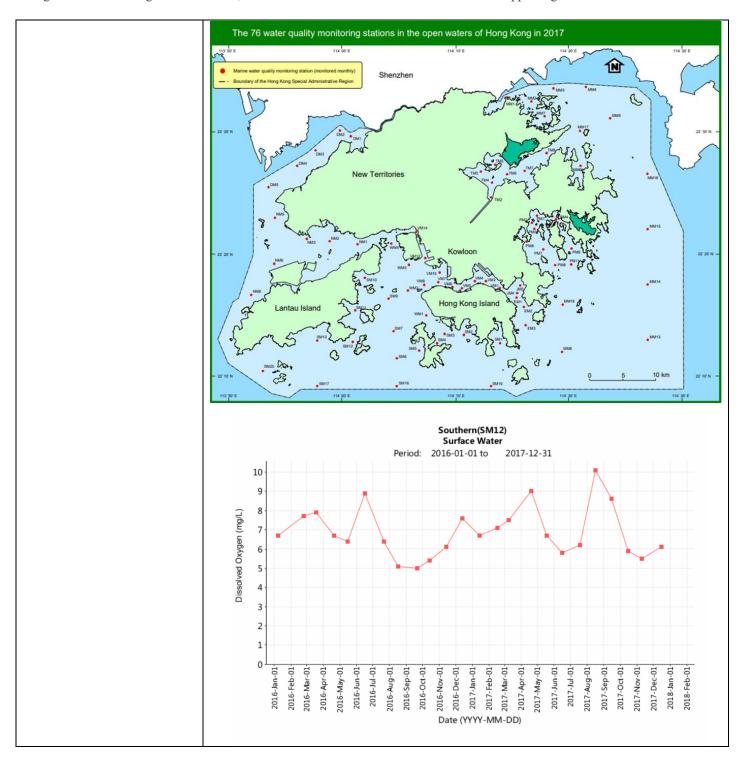
Project	Integrated Waste Management Facilities, Phase 1				
Date	24 Oct 2019 (Lab result received on 28 Oct 2019)				
Time	08:00 – 12:07 (Mid-Ebb)				
	14:22 – 17:52 (Mid-Flood)	14:22 – 17:52 (Mid-Flood)			
	Mid-F	Ebb			
Monitoring Location	H1				
	+ B1 S1.	PROPOSED OUTFALL + SZA APROPOSED 132KV SUBMARINE CABLES SZ H1 SHEK KWU CH CR2 S3 PROPOSED RECLAIMED AREA FOR THE IMMIF	F1 F1A N F1 F1A N F1 F1A N N F1 F1A N N F1 F1A N N N N N N N N N N N N N		
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level	Limit L	evel		
retion & Ellint Ecvels	\geq 14.4 mg/L (120% of C1A)		mg/L (130% of C1A)		
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without		
Weasurement Level	Exceedance	Control Stations	Exceedance		
	15.2 mg/L (H1)	12.0 mg/L (C1A)	13.5 mg/L (B1)		
	13.2 mg/L (111)	10.7 mg/L (C2A)	9.0 mg/L (B2)		
		10.7 Hig/L (C2A)	10.5 mg/L (B3)		
			13.3 mg/L (B4)		
			13.3 mg/L (B4) 11.2 mg/L (F1A)		
			7.7 mg/L (M1)		
			8.3 mg/L (CR1)		
			6.7 mg/L (CR2)		
			10.5 mg/L (S1)		
			10.0 mg/L (S2A)		
D 11 6 4 2	XX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24/10: 1 1 5 07 5	11.0 mg/L (S3)		
Possible reason for Action or			ain works, DCM sample coring for		
Limit Level Non-compliance	*				
	temporary storage of surface rock, levelling the slag material, rock filling work flattening G200 rockfill of caisson foundation, loading surface rock and loosening to				
	slag materials by vibratory ha	ammer with H-beam.			
	Dominating sea current direction was found to be from Northwest to Southeast at around Shek Kwu Chau.				

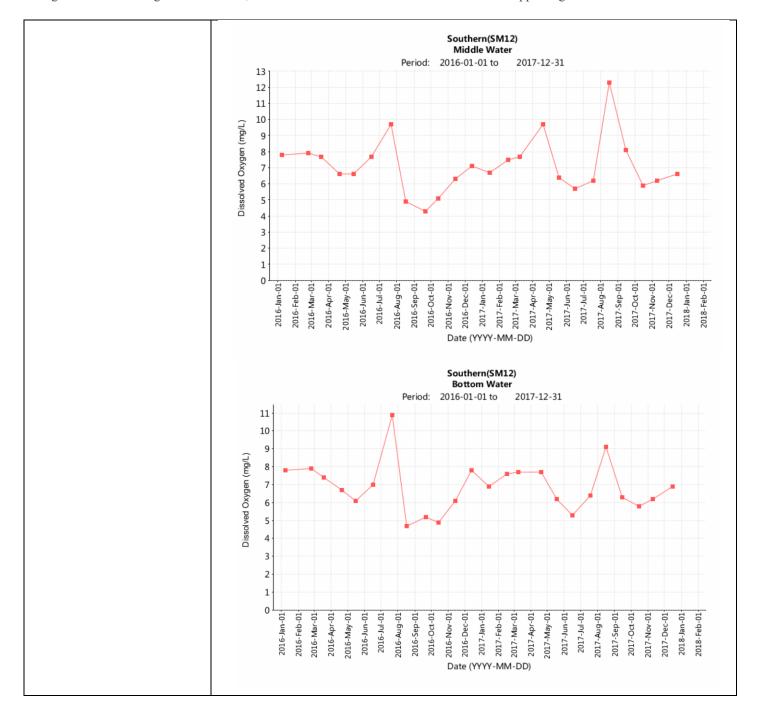
H1 is located at upstream direction to the Project site while silt curtain checking was implemented on DL-5 (09:00), FTB-19 (16:00), GD-853 (07:00), UDL-2 (07:00), 港龍 108 (07:00) and Cheung Kee No.10 (07:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No DCM main works scheduled in ESC-62 was carried out refer to the site diary on that day. According to the site document provided by the Contractor, no works record of 宏建 2 was stated in the site diary on that day

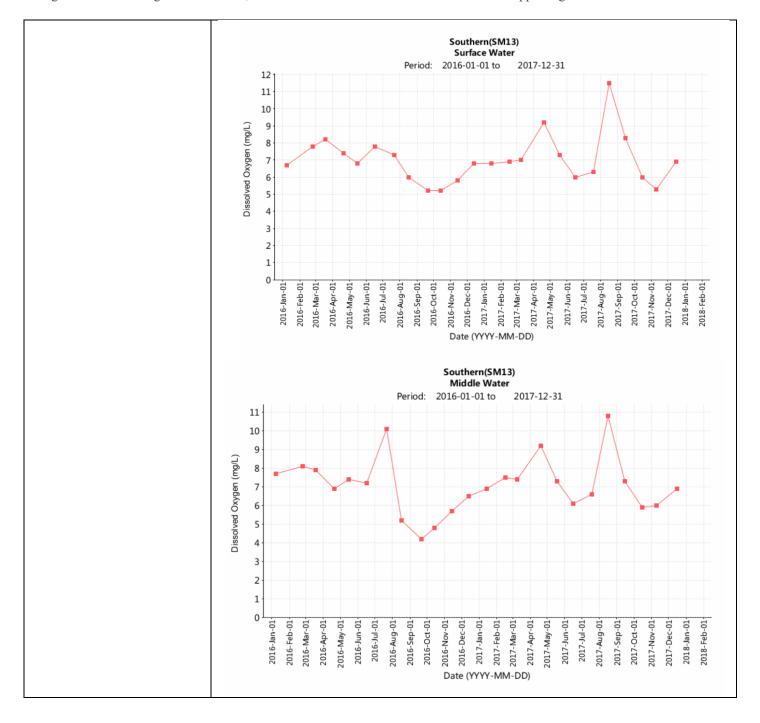

From MMO monitoring records on 24/10, MMO teams were arranged for four derrick barges (港龍 108, UDL-2, Cheung Kee No.10, 宏建 2) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. FTB-19, GD-853 & DL-5 were observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.

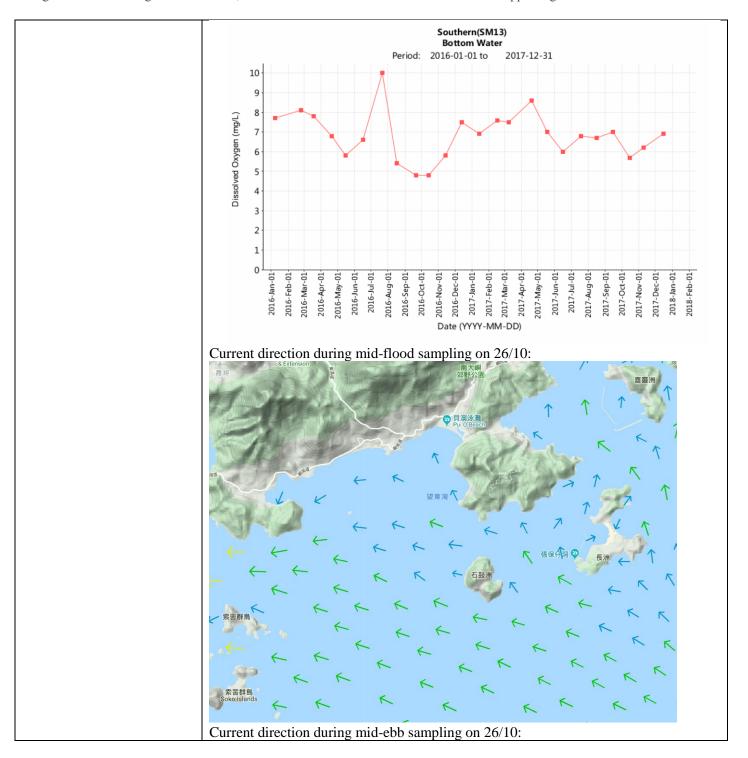
According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. It might suggest that the SS exceedance at H1 is deemed to be unrelated to the Project.

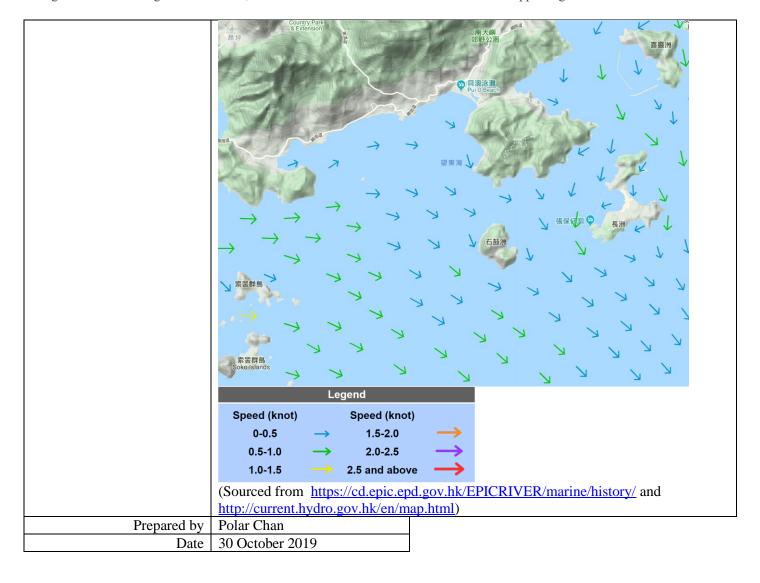
Site tidiness in the present barges in the Project site were checked during weekly site inspection on 23/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.


Mid-Flood B2, M1, CR1, CR2, S2A & S3 Monitoring Location H1 C2A SHEK KWU CHAU C1 Kev A PROPOSED 132KV C1A SUBMARINE CABLE MONITORING STATION PROPOSED RECLAIMED AREA THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWME SITE BOUNDARY Suspended Solid (SS) Parameter Action & Limit Levels Action Level Limit Level $\geq 10.4 \text{ mg/L} (130\% \text{ of C2A})$ \geq 9.6 mg/L (120% of C2A) Measurement Level Impact Station(s) of **Control Stations** Impact Station(s) without Exceedance Exceedance 10.3 mg/L (B2) 8.8 mg/L (C1A) 7.0 mg/L (B1)17.2 mg/L (M1) 8.0 mg/L (C2A) 6.5 mg/L (B3) 12.0 mg/L (CR1) 8.3 mg/L (B4) 13.0 mg/L (CR2) 7.2 mg/L (F1A) 13.5 mg/L (S2A) 8.2 mg/L (H1) 22.8 mg/L (S3) 9.3 mg/L (S1)


Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 24/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, rock filling works, flattening G200 rockfill of caisson foundation, loading surface rock and loosening the slag materials by vibratory hammer with H-beam.
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.
	B2, M1 & S2A are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project.
	CR1 is located at upstream direction, CR2 & S3 are located close to works location within the Project site while silt curtain checking was implemented on DL-5 (09:00), FTB-19 (16:00), GD-853 (07:00), UDL-2 (07:00), 港龍 108 (07:00) and Cheung Kee No.10 (07:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No DCM main works scheduled in ESC-62 was carried out refer to the site diary on that day. According to the site document provided by the Contractor, no works record of 宏建 2 was stated in the site diary on that day.
	From MMO monitoring records on 24/10, MMO teams were arranged for four derrick barges (港龍 108, UDL-2, Cheung Kee No.10, 宏建 2) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. FTB-19, GD-853 & DL-5 were observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.
	According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. It might suggest that the SS exceedances at CR1, CR2 & S3 are deemed to be unrelated to the Project.
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 23/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the
	weekly inspection, and the Contractor is reminded to implement all applicable
Damanka	mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-ebb sampling on 24/10:

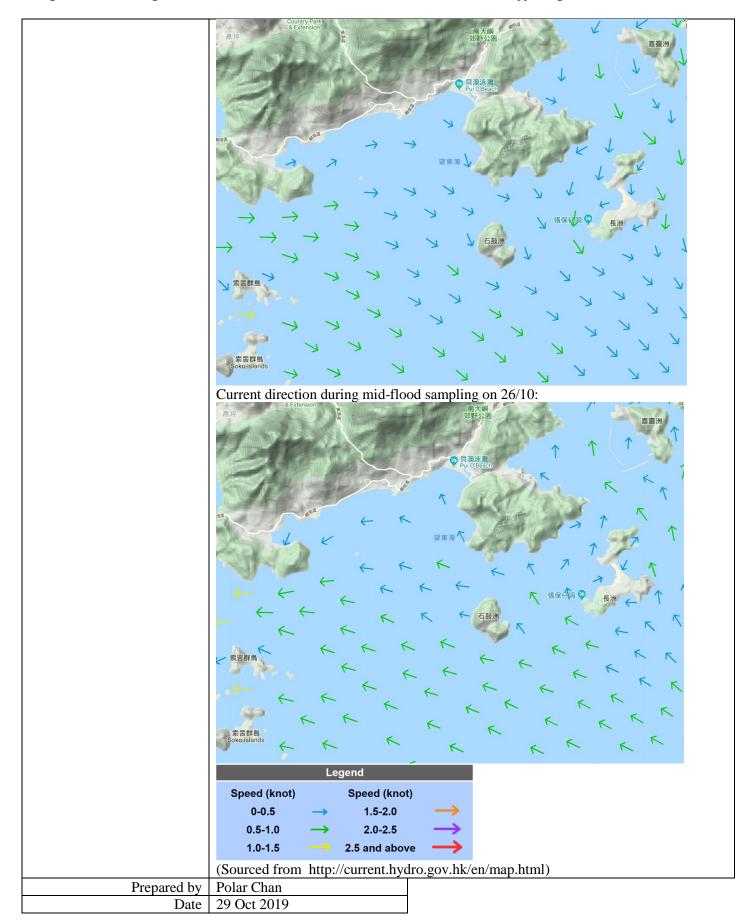



Project	Integrated Waste Management Facilities, Phase 1				
Date	26 October 2019				
Time	15:25 – 18:55 (Mid-Flood)				
	09:01 – 12:31 (Mid-Ebb)				
	Mid-F	lood			
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B1 S1	PROPOSED CLAIME FOR THE IMME	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Donomoton	Disselved Owner (DO)				
Parameter Action & Limit Levels	Dissolved Oxygen (DO) Action Level		Limit Level		
Action & Limit Levels					
Measurement Level	\leq 7.13 mg/L Impact Station(s) with	Control Stati	$\leq 4.00 \text{ mg/L}$	Impact Station(s) without	
Weastrement Level	Exceedance	Control Stati	ions	Exceedance	
	6.97 mg/L (B1)	6.82 mg/L (0	71Δ)	Excedimee	
	6.65 mg/L (B2)	6.96 mg/L (0	,		
	6.64 mg/L (B3)	0.70 mg/L (C	<i>21</i> A)		
	6.98 mg/L (B4)				
	6.97 mg/L (F1A)				
	7.00 mg/L (H1)				
	6.99 mg/L (M1)				
	7.05 mg/L (CR1)				
	6.85 mg/L (CR2)				
	6.82 mg/L (S1)				
	6.99 mg/L (S2A)				
	6.73 mg/L (S3)				
Possible reason for Action or	All monitoring stations inclu	ding control st	ations (C1A &	C2A) exhibited low and	
Limit Level Non-compliance	_	-			
r	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.				
	By reviewing the available distations SM12 & SM13 in Oct (7.13 mg/L) during dry seaso impact stations near to the Printhal exceedance of Action levels.	ctober 2016 & on. Considering oject Site and	October 2017 ig the absence of plausible seaso	is also below Action Level f distinct low DO at the nal factor, it is concluded	


	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb				
Monitoring Location		F1A, H1, M1, CR1, CR2, S1,	S2A & S3		
Monitoring Location	+ B10 S1	SZA APROPOSED 132KV SUBMARINE CABLES B3 B3 B4 B3 B4 B3 B4 B3 B4 B3 B4 B3 B4 B4	F1 F1A N F1 F1A N Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION		
		PROPOSED RECLAINED AREA-FOR THE IMMF	PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY		
Parameter	Dissolved Oxygen (DO)				
Action & Limit Levels	Action Level	Limit Level			
	\leq 7.13 mg/L	\leq 4.00 mg/L			
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without		
	Exceedance	7.11 mg/L (C1A)	Exceedance		
	6.85 mg/L (B1) 6.98 mg/L (B2)	7.11 mg/L (C1A) 6.99 mg/L (C2A)			
	7.05 mg/L (B3)	0.99 Hig/L (C2A)			
	7.00 mg/L (B4)				
	6.84 mg/L (F1A)				
	7.04 mg/L (H1)				
	6.84 mg/L (M1)				
	7.10 mg/L (CR1)				
	7.09 mg/L (CR2)				
	7.07 mg/L (S1)				
	6.95 mg/L (S2A)				
Possible reason for Action or	7.06 mg/L (S3) All monitoring stations include	ding control stations (C1A &	C2A) exhibited low and		
Limit Level Non-compliance	<u>o</u>	•			
Emile Sever From compilative	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018.				
	By reviewing the available da	ata from EPD, the DO level o	f marine water monitoring		
	stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded				
		vel of DO at all monitoring sta			
A stiems to1 / t - 1		ons and deemed to be unrelate			
Actions taken / to be taken		al performance of the Project			
	mitigation measures as per th	ontractor is reminded to imple Updated EM&A Manual	ement an applicable		
Remarks	Supporting figures of the EPI				
IX-IIIai Ko	bupporung figures of the Eri	o water data.			

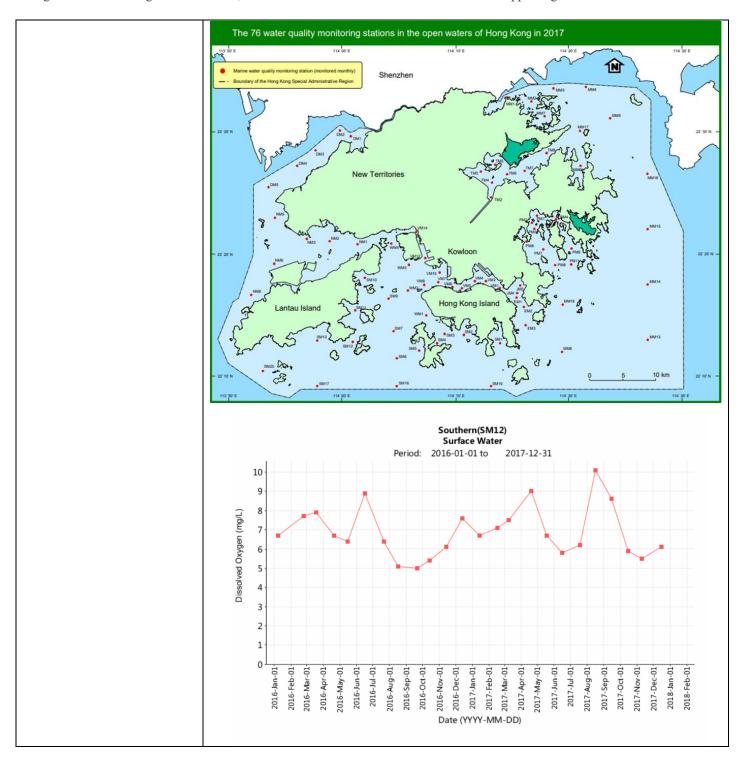
Project	Integrated Waste Management Facilities, Phase 1				
Date	26 Oct 2019 (Lab result received on 29 Oct 2019)				
Time	09:01 – 12:31 (Mid-Ebb)				
	15:25 – 18:55 (Mid-Flood)	15:25 – 18:55 (Mid-Flood)			
	Mid-E	Ebb			
Monitoring Location	F1A, M1, CR2 & S3				
	+ B1 S1-	PROPOSED OUTFALL + S2A 4 PROPOSED I SUBMARINE C. PROPOSED RECLAME FOR THE IMMF	H1 SHEK KWU CHAU CR2 S3 CR1	F1 F1A N Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
Action & Limit Levels	\geq 9.8 mg/L (120% of C1A)			130% of C1A)	
Measurement Level	Impact Station(s) of	Control Stati		Impact Station(s) without	
Weasurement Level	Exceedance	Control Stati	ions	Exceedance	
	10.2 mg/L (F1A)	8.2 mg/L (C	1Δ)	6.8 mg/L (B1)	
	11.3 mg/L (M1)	9.2 mg/L (C	· ·	7.3 mg/L (B2)	
	11.7 mg/L (CR2)	7.2 mg/L (C	211)	8.3 mg/L (B3)	
	12.2 mg/L (S3)			9.0 mg/L (B4)	
	12.2 Hg/L (53)			8.8 mg/L (H1)	
				9.7 mg/L (CR1)	
				8.5 mg/L (S1) 9.7 mg/L (S2A)	
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 26/10 include DCM main works, DCM sample coring for DCM main works, cone penetration test, levelling the sand blanket, removal of temporary storage of surface rock, levelling the slag material, rock filling works, flattening G200 rockfill of caisson foundation, loading surface rock and loosening the slag materials by vibratory hammer with H-beam. Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau. F1A & M1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project.				

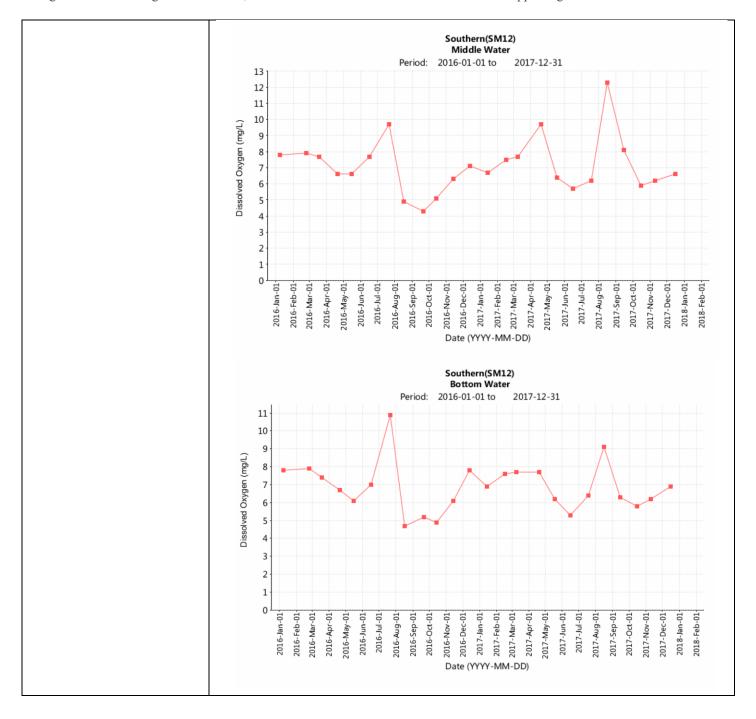
CR2 & S3 are located close to works location within the Project site while silt curtain checking was implemented on DL-5 (12:00), ESC-62 (07:00), GD-853 (07:00), UDL-2 (07:00), 宏建 1 (19:00) & 永照 18 (07:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No levelling of the slag material scheduled in 港龍 108 was carried out with refer to the site diary on that day.

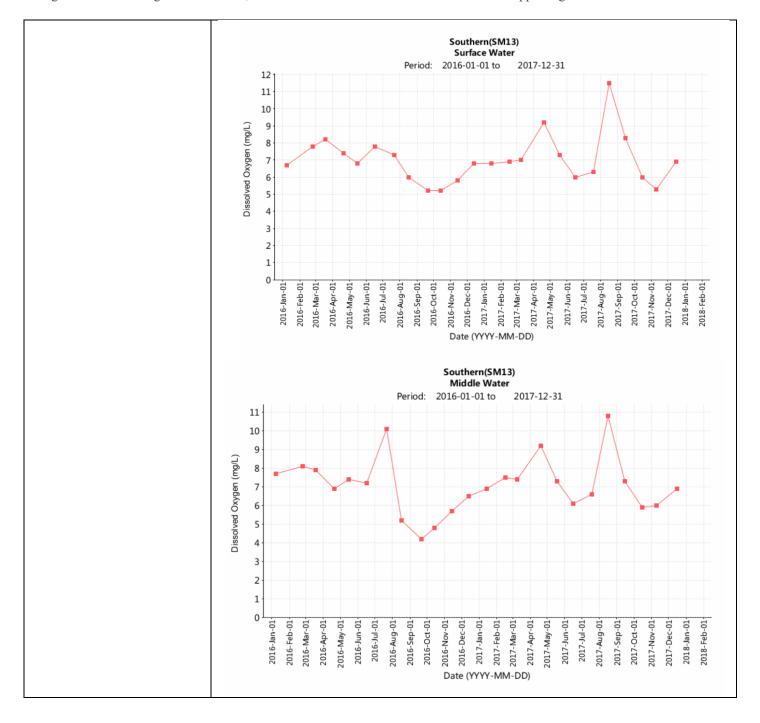

From MMO monitoring records on 26/10, MMO teams were arranged for five derrick barges (港龍 108, UDL-2, 宏建 1, GD-853, 永照 18) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. DL-5 was observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.

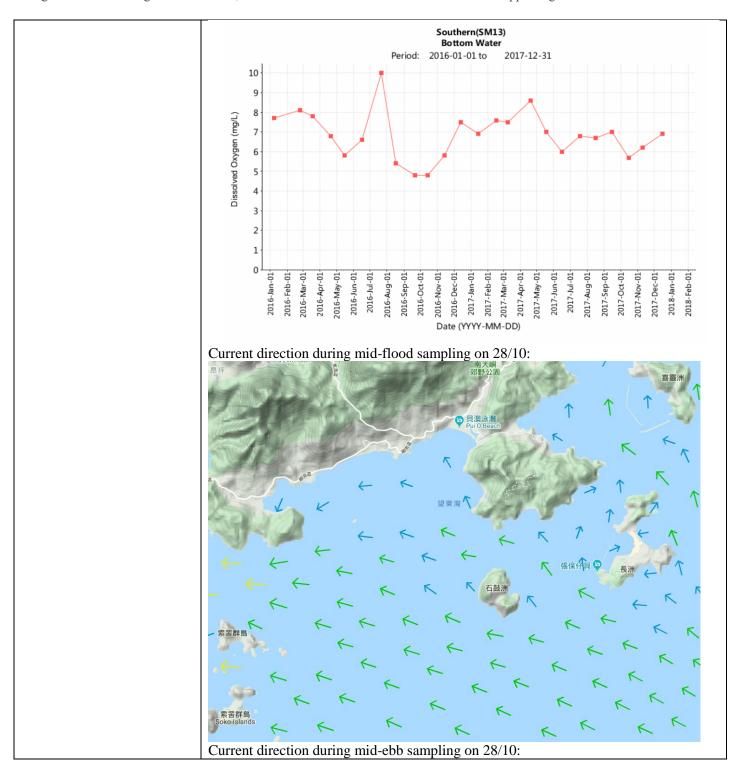
According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. It might suggest that the SS exceedances at CR2 & S3 are deemed to be unrelated to the Project.

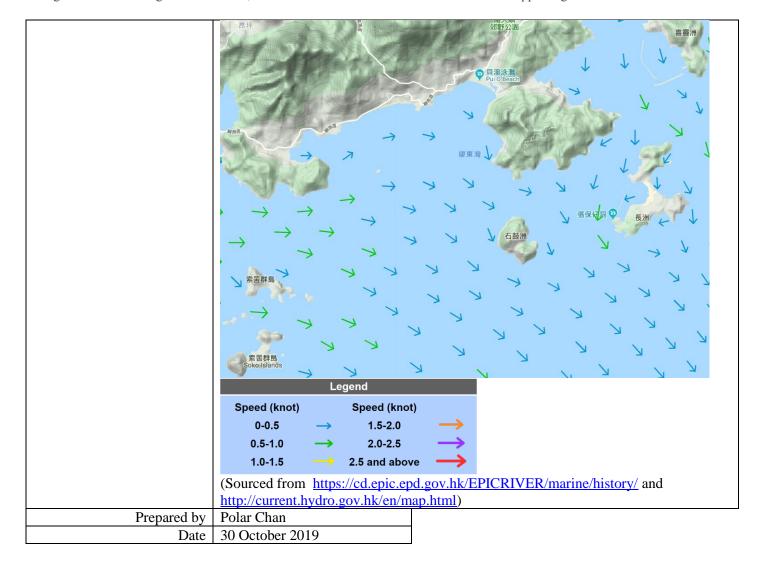
Site tidiness in the present barges in the Project site were checked during weekly site inspection on 23/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.

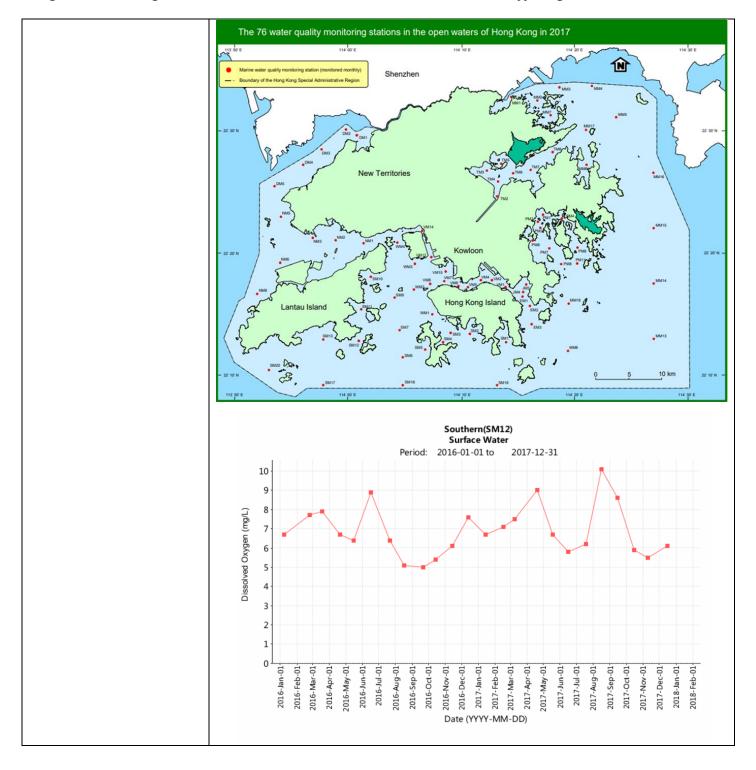

Mid-Flood Monitoring Location **B2** H1 ■C2A SHEK KWU CHAU C1 Key C1A CR2 SUBMARINE CABLE 83 MONITORING STATION PROPOSED RECLAIMED AREA THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWME SITE BOUNDARY Suspended Solid (SS) Parameter Action & Limit Levels Action Level Limit Level $\geq 10.6 \text{ mg/L} (120\% \text{ of C2A})$ \geq 11.5 mg/L (130% of C2A) Measurement Level Impact Station(s) of **Control Stations** Impact Station(s) without Exceedance Exceedance 11.0 mg/L (B2) 9.0 mg/L (C1A) 9.3 mg/L (B1) 8.8 mg/L (C2A) 8.5 mg/L (B3) 9.5 mg/L (B4) 8.7 mg/L (F1A) 9.2 mg/L (H1) 7.7 mg/L (M1)

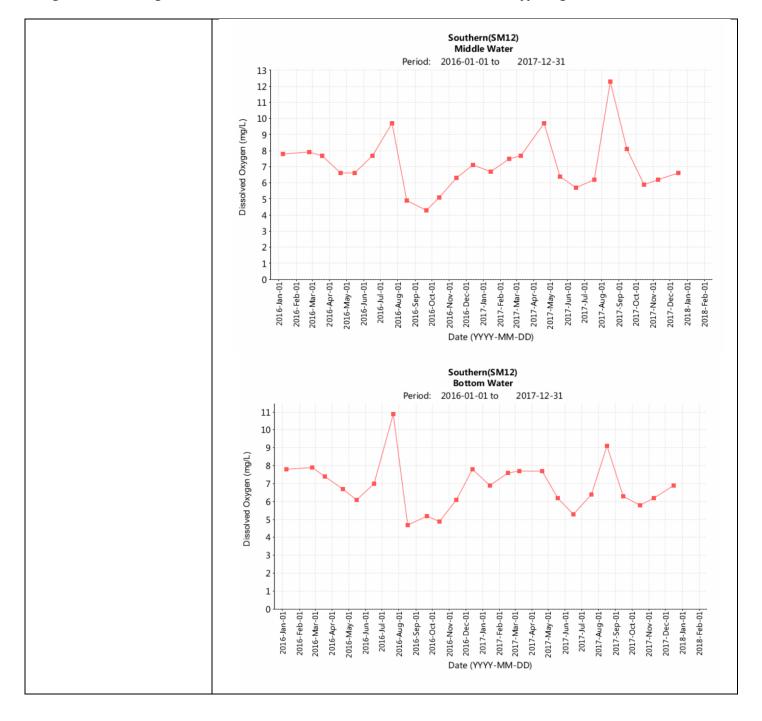

	7.2 mg/L (CR1)			
	6.8 mg/L (CR2)			
	7.3 mg/L (S1)			
	8.0 mg/L (S2A)			
	7.8 mg/L (S3)			
Possible reason for Action or	Works scheduled on site on 26/10 include DCM main works, DCM sample coring for			
Limit Level Non-compliance	DCM main works, cone penetration test, levelling the sand blanket, removal of			
	temporary storage of surface rock, levelling the slag material, rock filling works,			
	flattening G200 rockfill of caisson foundation, loading surface rock and loosening the			
	slag materials by vibratory hammer with H-beam.			
	Dominating sea current direction was found to be from Southeast to Northwest a waters around Shek Kwu Chau.			
	B2 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring station is deemed to be unrelated to the Project.			
	Silt curtain checking was implemented on DL-5 (12:00), ESC-62 (07:00), GD-853 (07:00), UDL-2 (07:00), 宏建 1 (19:00) & 永照 18 (07:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No levelling the slag material scheduled in 港龍 108 was carried out with refer to the site diary on that day.			
	From MMO monitoring records on $26/10$, MMO teams were arranged for five derrick barges (港龍 108 , UDL-2, 宏建 1 , GD- 853 , 永照 18) and one DCM barge (ESC- 62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. DL- 5 was observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.			
	According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. It might suggest that the SS exceedance at B2 is deemed to be unrelated to the Project.			
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 23/10. No major observation of improper site practices that could contribute to the increase of the suspended solids recorded.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the			
	weekly inspection, and the Contractor is reminded to implement all applicable			
	mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-ebb sampling on 26/10:			

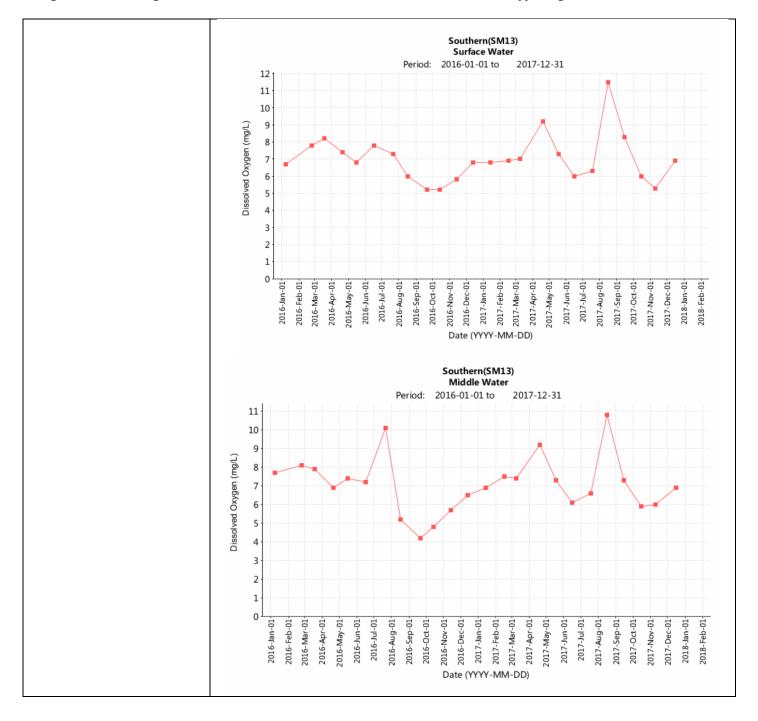


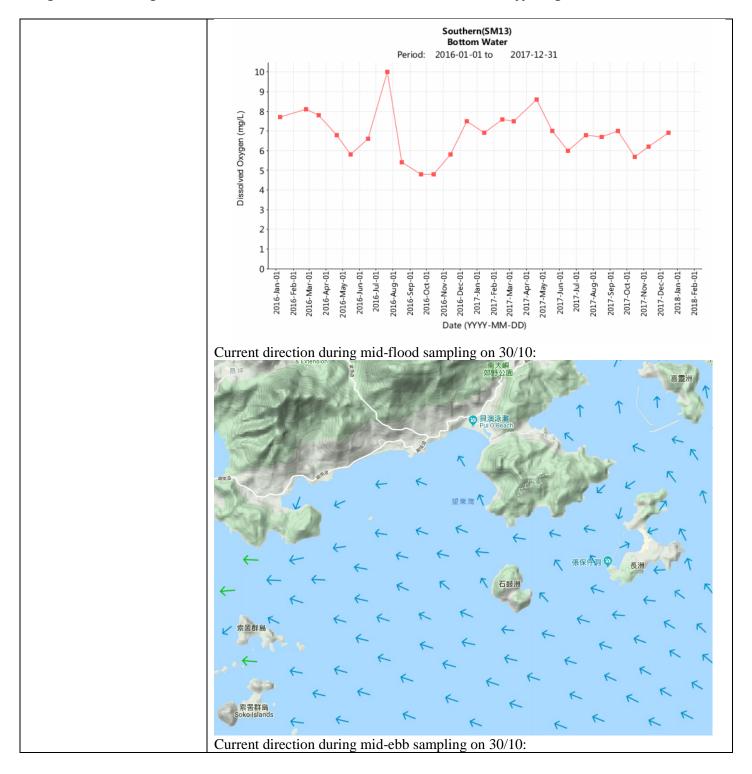

Time	28 October 2019					
	28 October 2019					
	15:26 – 19:00 (Mid-Flood)					
	10:35 – 14:05 (Mid-Ebb)					
	Mid-Flood					
Monitoring Location	B1, B2, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S2A & S3					
	+ B1 S1	PROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARINE CABLES S2 H1 SHER RWU CHAU CR2 PROPOSED RECLAIMED AREA FOR THE WIMF	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY			
Parameter	Dissolved Oxygen (DO)					
	Action Level Limit Level					
	$\leq 7.13 \text{ mg/L}$	$\leq 4.00 \text{ mg/L}$				
	Impact Station(s) with	Control Stations	Impact Station(s) without			
	Exceedance	Control Stations	Exceedance			
l	7.01 mg/L (B1)	7.05 mg/L (C1A)	7.15 mg/L (B3)			
	6.99 mg/L (B2)	7.08 mg/L (C2A)	7.20 mg/L (S1)			
	7.02 mg/L (B4)	7.00 mg 2 (0211)	,.20 mg/2 (81)			
	7.00 mg/L (F1A)					
	7.10 mg/L (H1)					
	7.05 mg/L (M1)					
	7.00 mg/L (CR1)					
	7.07 mg/L (CR2)					
	6.97 mg/L (S2A)					
	7.05 mg/L (S3)					
	Most of monitoring stations in	ncluding control stations (C	1A & C2A) exhibited low			
	and similar DO level. This pattern of drop of DO level at all monitoring stations has					
-	occurred in the Project in October 2018.					
į l	By reviewing the available data from EPD, the DO level of marine water monitoring					
	stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level					
	Stations Sivily as Sivily in the					
		n. Considering the absence of	of distinct low DO at the			
	(7.13 mg/L) during dry season					
	(7.13 mg/L) during dry season impact stations near to the Pro	oject Site and plausible seas	onal factor, it is concluded			
	(7.13 mg/L) during dry season	oject Site and plausible seas yel of DO at these monitorin	onal factor, it is concluded g stations are related to			

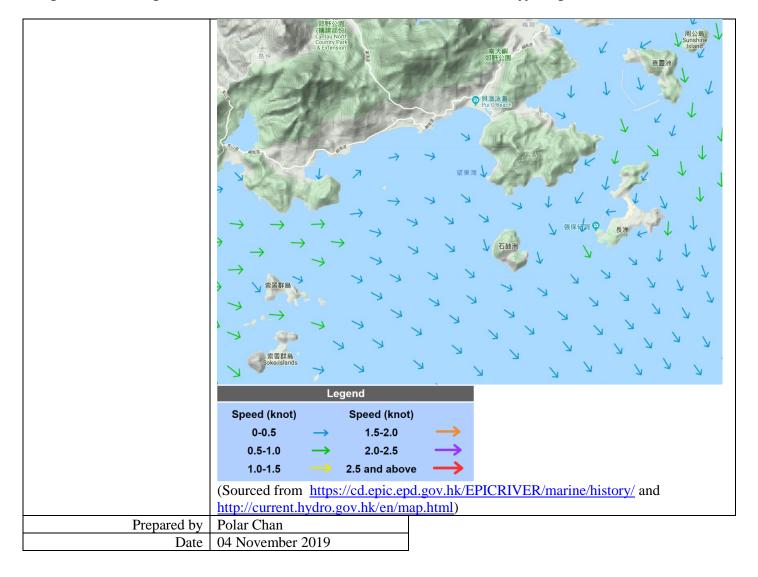

Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3			
	+ B1	B2 APROPOSED OUTFALL + APROPOSED 132KV SUBMARINE CABLES B3 B4 CR1 PROPOSED RECLAMIED AREA FOR THE IMMF	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
D	D: 1 10 (D0)			
Parameter	Dissolved Oxygen (DO)			
Action & Limit Levels	Action Level	Limit Level		
	≤ 7.13 mg/L	\leq 4.00 mg/L		
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without	
	Exceedance	7 (71.1)	Exceedance	
	6.89 mg/L (B1)	6.92 mg/L (C1A)		
	6.93 mg/L (B2)	7.05 mg/L (C2A)		
	6.96 mg/L (B3)			
	6.88 mg/L (B4)			
	6.96 mg/L (F1A)			
	6.94 mg/L (H1)			
	6.84 mg/L (M1)			
	6.94 mg/L (CR1)			
	6.91 mg/L (CR2)			
	6.98 mg/L (S1) 6.95 mg/L (S2A)			
	6.85 mg/L (S2A)			
Possible reason for Action or	All monitoring stations include	L ding control stations (C1A &	(C2A) exhibited low and	
Limit Level Non-compliance	similar DO level. This pattern		*	
Elimit Ecver Ivon compliance	occurred in the Project in Oct	-	omtoring stations has	
	By reviewing the available da	ata from FPD, the DO level o	of marine water monitoring	
	stations SM12 & SM13 in Oc			
	(7.13 mg/L) during dry seaso			
	impact stations near to the Pr			
	that exceedance of Action lev			
	surrounding weather condition			
Actions taken / to be taken	Examination of environmenta			
12010115 taken / to be taken	weekly inspection, and the Co			
	mitigation measures as per th	_	an applicable	
Remarks	Supporting figures of the EPI			






Incident Report on Action Level or Limit Level Non-compliance


Project	Integrated Waste Managemen	nt Facilities, Pl	hase 1		
Date	30 October 2019				
Time	08:00 – 11:10 (Mid-Flood)				
	12:08 – 15:38 (Mid-Ebb)				
	Mid-Flood				
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3				
	+ B1	ROPOSED OUTFALL + 4 PROPOSED 13 SUBMARINE CA S2 4 PROPOSED 12 SUBMARINE CA	SHER KWU CHAU	Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Dissolved Oxygen (DO)				
Action & Limit Levels	Action Level		Limit Level		
Action & Limit Levels	≤7.13 mg/L		$\leq 4.00 \text{ mg/L}$		
Measurement Level	Impact Station(s) with	Control Stati		Impact Station(s) without	
Wedstrement Level	Exceedance	Control Stati	Olis	Exceedance	
	7.00 mg/L (B1)	6.93 mg/L (C	71A)	Execedance	
	6.94 mg/L (B2)	7.00 mg/L (C			
	6.84 mg/L (B3)	7.00 Mg/L (C	2211)		
	6.94 mg/L (B4)				
	6.97 mg/L (F1A)				
	6.93 mg/L (H1)				
	6.92 mg/L (M1)				
	6.94 mg/L (CR1)				
	6.91 mg/L (CR2)				
	7.01 mg/L (S1)				
	7.04 mg/L (S2A)				
	7.04 mg/L (S211) 7.03 mg/L (S3)				
Possible reason for Action or	All monitoring stations include	ding control st	ations (C1A &	C2A) exhibited low and	
Limit Level Non-compliance	similar DO level. This pattern	-			
Limit Level Non-compliance	occurred in the Project in Oct		Jievel at all lile	omtoring stations has	
	By reviewing the available data from EPD, the DO level of marine water monitors stations SM12 & SM13 in October 2016 & October 2017 is also below Action I (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is conclustate exceedance of Action level of DO at all monitoring stations are related to				


	surrounding weather conditions and deemed to be unrelated to the Project. Mid-Ebb					
Monitoring Location	B1, B2, B3, B4, C1A, C2A, F1A, H1, M1, CR1, CR2, S1, S2A & S3					
	B1, B2, B3, B4, C1A, C2A, T1A, T11, W11, CR1, CR2, S1, S2A & S3 PF1 PF1A PROPOSED OUTFALL + PROPOSED 132KV SLIPMARINE CABLES B3 B4					
	+ C1 C1A	SHER KWU CHAU CR2 PROPOSED RECLAIMED AREA FOR THE IMMIF	Key A PROPOSED 132KV SUBMARINE CABLE OC MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY			
Parameter	Dissolved Oxygen (DO)					
Action & Limit Levels	Action Level	Limit Level				
	≤ 7.13 mg/L	$\leq 4.00 \text{ mg/L}$	1			
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without			
Possible reason for Action or	Exceedance 6.88 mg/L (B1) 6.66 mg/L (B2) 6.92 mg/L (B3) 6.99 mg/L (B4) 6.72 mg/L (F1A) 6.90 mg/L (H1) 6.82 mg/L (M1) 6.85 mg/L (CR1) 6.67 mg/L (CR2) 6.76 mg/L (S1) 6.79 mg/L (S2A) 6.79 mg/L (S3) All monitoring stations include	6.80 mg/L (C1A) 6.74 mg/L (C2A) ding control stations (C1A &	Exceedance C2A) exhibited low and			
Limit Level Non-compliance	_	-				
•	similar DO level. This pattern of drop of DO level at all monitoring stations has occurred in the Project in October 2018. By reviewing the available data from EPD, the DO level of marine water monitoring stations SM12 & SM13 in October 2016 & October 2017 is also below Action Level (7.13 mg/L) during dry season. Considering the absence of distinct low DO at the impact stations near to the Project Site and plausible seasonal factor, it is concluded that exceedance of Action level of DO at all monitoring stations are related to surrounding weather conditions and deemed to be unrelated to the Project.					
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.					
	mitigation measures as per th	ne Updated EM&A Manual.				

Incident Report on Action Level or Limit Level Non-compliance

Project	Integrated Waste Management Facilities, Phase 1				
Date	30 Oct 2019 (Lab result received on 04 Nov 2019)				
Time	08:00 – 11:10 (Mid-Flood)				
	Mid-Fl	lood			
Monitoring Location	B4, H1, M1, CR1, CR2, S2A	& S3			
	+ B1 • S1-	PROPOSED OUTFALL + A PROPOSED 132KV SUBMARINE CABLES \$2 PROPOSED RECLAIMED ARI FOR THE MMIF	B3 B4	C2A Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level	1	Limit Level		
retion & Emili Bevers	$\geq 11.6 \text{ mg/L } (120\% \text{ of C2A})$		$\geq 12.6 \text{ mg/L} (1$	30% of C2A)	
Measurement Level	Impact Station(s) of	Control Station		Impact Station(s) without	
Tribusarement Ec ver	Exceedance			Exceedance	
	12.5 mg/L (B4)	10.7 mg/L (C1	A)	10.5 mg/L (B1)	
	12.2 mg/L (H1)	9.7 mg/L (C2A		11.3 mg/L (B2)	
	15.8 mg/L (M1)	e (,	11.5 mg/L (B3)	
	13.8 mg/L (CR1)			7.3 mg/L (F1A)	
	17.0 mg/L (CR2)			9.8 mg/L (S1)	
	18.3 mg/L (S2A)			(2 -)	
	11.7 mg/L (S3)				
Possible reason for Action or Limit Level Non-compliance					
	waters around Shek Kwu Cha		u to be Holli	Southeast to Northwest at	
	S2A, B4 & M1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedances of these monitoring stations are deemed to be unrelated to the Project.				
	CR1 is located at upstream of S3 are located close to the checking was implemented of	works location	within the Pro	oject Site while silt curtain	

3 (07:00), 永照 18 (07:00) & Cheung Kee No.10 (07:00) and checking results showed that no deficiency of silt curtain was found on that day.

From MMO monitoring records on 30/10, MMO teams were arranged for two derrick barges (Cheung Kee No.10 & 永照 18) and one DCM barge (ESC-62) on that day while no deficiency of silt curtain was found before the commencement of and during construction activity. 宏建 2, 宏建 3 & GD-853 were observed with no finding (no site deficiency and no potential source of SS) by the MMO at lookout point.

According to the field observation by sampling team & Marine Mammal Observer team during sampling event, no silt plume was observed in the Project site. It might suggest that the SS exceedance at H1, CR1, CR2 & S3 are deemed to be unrelated to the Project.

Site tidiness in the present barges in the Project site were checked during weekly site inspection on 29/10, where some sediment was observed on the edge of 港龍 108 and a small part of silt curtain near the boarding area was observed floating up on ESC-62.

Actions taken / to be taken

Sediment accumulated on the edge of the barge has been cleaned up on 1 November 2019. The silt curtain on ESC-62 has been repaired on 1 November 2019. The Contractor was reminded to clean the accumulated sediment regularly to prevent falling into the sea. The Contractor was also reminded to keep the silt curtain in good condition and position.

Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.

Remarks

		Le	egend	
	Speed (knot)		Speed (knot)	
	0-0.5	\rightarrow	1.5-2.0	\rightarrow
	0.5-1.0	\rightarrow	2.0-2.5	\rightarrow
	1.0-1.5		2.5 and above	\rightarrow
	(Sourced from	http:	//current.hydro	.gov.hk/
Prepared by	Polar Chan			
Date	5 Nov 2019			

Contract No. EP/SP/66. Integrated Waste Management	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix O	Complaint Log	

Statistical Summary of Environmental Complaints

Environmental Complaint Statistics			
Frequency	Cumulative	Complaint Nature	
0	0	N/A	
		-	

Statistical Summary of Environmental Summons

Reporting	Environmental Summons Statistics			
Period	Frequency	Cumulative	Details	
1 Oct 2019- 31 Oct 2019	0	0	N/A	

Statistical Summary of Environmental Prosecution

Reporting	Environmental Prosecution Statistics			
Period	Frequency	Cumulative	Details	
1 Oct 2019- 31 Oct 2019	0	0	N/A	

Contract No. EP/SP/66/ Integrated Waste Manag	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix P	Impact Monitoring Schedul Month	e of Next Reporting

Impact Monitoring Schedule for IWMF						
			Nov-19			
Sun	Mon	Tue	Wed	Thu	Fri	Sat
27	28	29	30	31	1	2
					Water Quality monitoring for Bi, B2, B2, B4, H1, CLA, C2A, FJA, CR1, CR2, M1, S1, S2A, S3 T-dal Printed Etb Total 13-4: 17-14 PROOF Tide (No. 13-23-4) Manufacting Time, Mol-exb: 13-3-7-09 Mol floot: 0R.07 - 11-37	
3	4	5	6	7	8	9
	Impact Daytime, Evening & Night time Noise monitoring for M1, M2 & M3	Water Quality monitoring for 81, 82, 83, 84, H., CLA, CAA, FIA, CR1, CR2, M1, S1, S2A, S-53 Total Prend: 15b Tale 0800-10-52 Plood Tide: 10-72-1800 Machinent Time. 40 Mod-Plood Tide: 10-74-1801 Daytime, Evening & Night time Noise monitoring for M1, M2 & M3		Water Quality monitoring for 81, E2, E8, B8, H1, C1A, C2A, FJA, CR1, CR2, M1, S1, S2A, S S Told Period: That Period: The Time Co443 - 12-39 Flood Time 12-39 Flood Time 12-39 Abdulational Times Monitorinal Times		Water Quality monitoring for \$1, 22, 81, 84, 41, C1A, C2A, FJA, CR1, CR2, M1, S1, S2A, 6-53 Talal Princip Tool Tide 1391-1-2019 Monitoring Time 1391-1-2019 Monitoring Time 1491-1-2019 Monitoring Time 1491-1-2019 Mid-Rood: 15-10-18-40
10	11	12	13	14	15	16
	Impact Water Quality monitoring for Bi, Bi, Bi, Bi, Hi, CLA, CZA, FIA, CRI, CR2, MI, Si, SZA & S3 Tidds Percol. Tide Vibro. Ti	Impact Daytime, Evening & Night time Noise monitoring for M1, M2 & M3	Water Quality monitoring for 81, 20, 28, 38, 411, C1A, C1A, F1A, CR1, CR2, M1, S1, S1A, 631 Table Period. Table Period. Table Table 10:11 - 15:09 Table Table 10:11 - 15:09 Monitoring Time: Monitoring Time: Mid-sebb 10:55 - 14:25 *# Mid-flood: 08:00 - 10:10		Water Quality monitoring for Bi, B2, B3, B4, H1, CLA, C2A, FJA, CR1, CR2, M1, S1, S2A, S.3 Table Period: Table Period: Table Period: Table Trable T1-25-51 FM Monitoring Times: Mod refers: \$1.921 - 15.92 *# Mid-flood: 08.00 - 11.23	
17	18	19	20	21	22	23
	Water Quality monitoring for 81, 82, 83, 84, Hz, CLA, CZA, F1A, CR1, CR2, M1.51, S2A, & S3 Tidst Percol. Tids	Impact Daytime, Evening & Night time Noise monitoring for M1, M2 & M3	Water Quality monitoring for 81, 20, 83, 84, 41, C1A, C2A, F3A, CR1, CR2, M1, S1, S3A, 63 3 Told Previol. Told Treviol. Flow Tale: 00,000-0051 Ploot Tale: 00,124-019 **Water Section Control		Water Quality monitoring for Bi, B2, B3, B4, H1, C1A, C2A, F1A, CR1, CR2, N1, S1, S2A, S53 Table Protein Table Protein Flood Table 1146 Flood Table 1146 Flood Table 1146 Flood Table 1146 Mid-Hood: 13:38 - 17:08	
24	25	26	27	28	29	30
	Impact Water Quality monitoring for Bit, Bit, Sib, 84, H1, CLA, CDA, F1A, CR1, CR2, MIL, SI, SIA & S3 Talish Percision Fiber Diskort Sib, Sib, Sib, Sib, Sib, Sib, Sib, Sib,	Impact Daytime, Evening & Night time Noise monitoring for M1, M2 & M3	Water Quality monitoring for Et. 22, 82, 84, 81, CLA, CLA, FJA, CRJ, CRJ, ML, SL, SLA, SLA, SLA, SLA, SLA, SLA, SLA		Water Quality monitoring for Bi, D. 2, B, B, H, L, CLA, CJA, FJA, CR1, CR2, M1, S1, SJA 6, S3 Tald Product Table 12-34 - 15-05 Table 12-35 - 15-07 Mid-flood: 08.23 - 11-51	

Remarks:

1. Daytime Noise Monitoring (07:00-1900), Evening Time Noise Monitoring (1900-2300), Night Time Noise Monitoring (2300-0700)

2. Water Quality Monitoring for S1,52 and 53 will only conduct during DCM works, refer to Detailed DCM Plan

Note:
- "a sper Marine Department Notice No 107 of 2018, all vessels employed for the works should stay in the works area outside the hours of works (0700 to 2800). Due to safty concern, Water Quality Monitoring would start at 0800.
- Prioritized routing, Mid-Ebb. C 1,543-0(23-043-041). Hermaling stations and Mod-Flood. C 2-0431-93-042-941-9-Remaining stations
- Since predicted five is obserted than \$5.0 sort, method of \$95 \text{it did period as monitoring time is approached.}

- Due to safely concern for sampling event in night-time, method of \$90 \text{it did period as monitoring time is approached and end at 1900.